2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke

A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

Reviewed for evidence-based integrity and endorsed by the American Association of Neurological Surgeons and Congress of Neurological Surgeons

Endorsed by the Society for Academic Emergency Medicine

William J. Powers, MD, FAHA, Chair; Alejandro A. Rabinstein, MD, FAHA, Vice Chair; Teri Ackerson, BSN, RN; Opeolu M. Adeoye, MD, MS, FAHA;
Nicholas C. Bambakidis, MD, FAHA; Kyra Becker, MD, FAHA; José Biller, MD, FAHA;
Michael Brown, MD, MSc; Bart M. Demaerschalk, MD, MSc, FAHA; Brian Hoh, MD, FAHA;
Edward C. Jauch, MD, MS, FAHA; Chelsea S. Kidwell, MD, FAHA;
Thabele M. Leslie-Mazwi, MD; Bruce Ovbiagele, MD, MSc, MAS, MBA, FAHA;
Phillip A. Scott, MD, MBA, FAHA; Kevin N. Sheth, MD, FAHA;
Andrew M. Southerland, MD, MSc; Deborah V. Summers, MSN, RN, FAHA;

David L. Tirschwell, MD, MSc, FAHA; on behalf of the American Heart Association Stroke Council

Background and Purpose—The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations for clinicians caring for adult patients with acute arterial ischemic stroke in a single document. The intended audiences are prehospital care providers, physicians, allied health professionals, and hospital administrators. These guidelines supersede the 2013 guidelines and subsequent updates.

Methods—Members of the writing group were appointed by the American Heart Association Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Strict adherence to the American Heart Association conflict of interest policy was maintained. Members were not allowed to participate in discussions or to vote on topics relevant to their relations with industry. The members of the writing group unanimously approved all recommendations except when relations with industry precluded members voting. Prerelease review of the draft guideline was performed by 4 expert peer reviewers and by the members of the Stroke Council's Scientific Statements Oversight

Data Supplement 1 (Evidence Tables) is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STR.00000000000158/-/DC1. Data Supplement 2 (Literature Search) is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STR.00000000000158/-/DC2.

The American Heart Association requests that this document be cited as follows: Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL; on behalf of the American Heart Association Stroke Council. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:eXXX–eXXX. doi: 10.1161/STR.000000000000158.

The expert peer review of AHA-commissioned documents (eg, scientific statements, clinical practice guidelines, systematic reviews) is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://professional.heart.org/statements. Select the "Guidelines & Statements" drop-down menu, then click "Publication Development."

© 2018 American Heart Association, Inc.

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This guideline was approved by the American Heart Association Science Advisory and Coordinating Committee on November 29, 2017, and the American Heart Association Executive Committee on December 11, 2017. A copy of the document is available at http://professional.heart.org/statements by using either "Search for Guidelines & Statements" or the "Browse by Topic" area. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@ wolterskluwer.com.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the "Copyright Permissions Request Form" appears on the right side of the page.

Stroke is available at http://stroke.ahajournals.org

Committee and Stroke Council Leadership Committee. These guidelines use the American College of Cardiology/ American Heart Association 2015 Class of Recommendations and Levels of Evidence and the new American Heart Association guidelines format.

- **Results**—These guidelines detail prehospital care, urgent and emergency evaluation and treatment with intravenous and intra-arterial therapies, and in-hospital management, including secondary prevention measures that are appropriately instituted within the first 2 weeks. The guidelines support the overarching concept of stroke systems of care in both the prehospital and hospital settings.
- *Conclusions*—These guidelines are based on the best evidence currently available. In many instances, however, only limited data exist demonstrating the urgent need for continued research on treatment of acute ischemic stroke. (*Stroke.* 2018;49:eXXX–eXXX. DOI: 10.1161/STR.00000000000158.)

Key Words: AHA Scientific Statements ■ secondary prevention ■ stroke ■ therapeutics

New high-quality evidence has produced major changes in the evidence-based treatment of patients with acute ischemic stroke (AIS) since the publication of the most recent "Guidelines for the Early Management of Patients With Acute Ischemic Stroke" in 2013.1 Much of this new evidence has been incorporated into American Heart Association (AHA) focused updates, guidelines, or scientific statements on specific topics relating to the management of patients with AIS since 2013. The purpose of these guidelines is to provide an up-to-date comprehensive set of recommendations for clinicians caring for adult patients with acute arterial ischemic stroke in a single document. These guidelines address prehospital care, urgent and emergency evaluation and treatment with intravenous (IV) and intraarterial therapies, and in-hospital management, including secondary prevention measures that are often begun during the initial hospitalization. We have restricted our recommendations to adults and to secondary prevention measures that are appropriately instituted within the first 2 weeks. We have not included recommendations for cerebral venous sinus thrombosis because they were covered in a 2011 scientific statement and there is no new evidence that would change those conclusions.2

An independent evidence review committee was commissioned to perform a systematic review of a limited number of clinical questions identified in conjunction with the writing group, the results of which were considered by the writing group for incorporation into this guideline. The systematic reviews "Accuracy of Prediction Instruments for Diagnosing Large Vessel Occlusion in Individuals With Suspected Stroke: A Systematic Review for the 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke"³ and "Effect of Dysphagia Screening Strategies on Clinical Outcomes After Stroke: A Systematic Review for the 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke"⁴ are published in conjunction with this guideline.

These guidelines use the American College of Cardiology (ACC)/AHA 2015 Class of Recommendations (COR) and Levels of Evidence (LOE) (Table 1) and the new AHA guidelines format. New or revised recommendations that supersede previous guideline recommendations are accompanied by 250-word knowledge bytes and data supplement tables summarizing the key studies supporting the recommendations in place of extensive text. Existing recommendations that are unchanged are reiterated with reference to the previous publication. These previous publications and their abbreviations used in this document are listed in Table 2. When there is no new pertinent evidence, for these unchanged recommendations, no knowledge byte or data supplement is provided. For some unchanged recommendations, there are new pertinent data that support the existing recommendation, and these are provided. Additional abbreviations used in this guideline are listed in Table 3.

Members of the writing group were appointed by the AHA Stroke Council's Scientific Statements Oversight Committee, representing various areas of medical expertise. Strict adherence to the AHA conflict of interest policy was maintained throughout the writing and consensus process. Members were not allowed to participate in discussions or to vote on topics relevant to their relationships with industry. Writing group members accepted topics relevant to their areas of expertise, reviewed the stroke literature with emphasis on publications since the prior guidelines, and drafted recommendations. Draft recommendations and supporting evidence were discussed by the writing group, and the revised recommendations for each topic were reviewed by a designated writing group member. The full writing group then evaluated the complete guidelines. The members of the writing group unanimously approved all recommendations except when relationships with industry precluded members voting. Prerelease review of the draft guideline was performed by 4 expert peer reviewers and by the members of the Stroke Council's Scientific Statements Oversight Committee and Stroke Council Leadership Committee.

Table 1. Applying ACC/AHA Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care* (Updated August 2015)

CLASS (STRENGTH) OF RECOMMENDAT	IUN	LEVEL (QUALITY) OF EVID	ENCE‡
CLASS I (STRONG) Ber	1efit >>> Risk	LEVEL A	
Suggested phrases for writing recommendations: Is recommended Is indicated/useful/effective/beneficial Should be performed/administered/other 		 High-quality evidence‡ from n Meta-analyses of high-quality One or more RCTs corroborate 	RCTs
Comparative-Effectiveness Phrases†:	to d in	LEVEL B-R	(Randomized)
 Treatment/strategy A is recommended/indica preference to treatment B Treatment A should be chosen over treatment 		 Moderate-quality evidence‡ fi Meta-analyses of moderate-quality 	
CLASS IIa (MODERATE) Be	enefit >> Risk	LEVEL B-NR	(Nonrandomized)
Suggested phrases for writing recommendations: Is reasonable Can be useful/effective/beneficial Comparative-Effectiveness Phrases†: Treatment/strategy A is probably recommended 	d/indicated in	 Moderate-quality evidence‡ fr well-executed nonrandomized studies, or registry studies Meta-analyses of such studies 	studies, observational
preference to treatment B • It is reasonable to choose treatment A		LEVEL C-LD	(Limited Data)
over treatment B		 Randomized or nonrandomized studies with limitations of des 	
CLASS IIb (WEAK) E	Benefit \geq Risk	 Meta-analyses of such studies 	5
Suggested phrases for writing recommendations: May/might be reasonable		Physiological or mechanistic s	tudies in human subjects
 May/might be reasonable May/might be considered 		LEVEL C-EO	(Expert Opinion)
 Usefulness/effectiveness is unknown/unclear/un or not well established 	icertain	Consensus of expert opinion bas	ed on clinical experience
CLASS III: No Benefit (MODERATE) E (Generally, LOE A or B use only)	Benefit = Risk	COR and LOE are determined independently	(any COR may be paired with any LOE).
Suggested phrases for writing recommendations: Is not recommended 		A recommendation with LOE C does not impl important clinical questions addressed in gu trials. Although RCTs are unavailable, there m a particular test or therapy is useful or effect	idelines do not lend themselves to clinical ay be a very clear clinical consensus that
Is not indicated/useful/effective/beneficialShould not be performed/administered/other		* The outcome or result of the intervention sl outcome or increased diagnostic accuracy	
	Risk > Benefit	† For comparative-effectiveness recommend, studies that support the use of comparator of the treatments or strategies being evaluation.	r verbs should involve direct comparisons
Suggested phrases for writing recommendations: Potentially harmful Causes harm 		The method of assessing quality is evolving widely used, and preferably validated evide the incorporation of an Evidence Review Co	ence grading tools; and for systematic revie
 Associated with excess morbidity/mortality 		COR indicates Class of Recommendation; EC	

- Should not be performed/administered/other

Level of Evidence; NR, nonrandomized; R, randomized; and RCT, randomized controlled trial.

Table 2. Guidelines, Policies, and Statements Relevant to the Management of AIS

Document Title	Publication Year	Abbreviation Used in This Document
"Recommendations for the Implementation of Telemedicine Within Stroke Systems of Care: A Policy Statement From the American Heart Association" $^{\rm 5}$	2009	N/A
"Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association"	2013	2013 AIS Guidelines
"Interactions Within Stroke Systems of Care: A Policy Statement From the American Heart Association/ American Stroke Association" $^{\rm 86}$	2013	2013 Stroke Systems of Care
"2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines" ⁷	2013	2013 Cholesterol Guidelines
"2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society" ⁸	2014	N/A
"Recommendations for the Management of Cerebral and Cerebellar Infarction With Swelling: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association" ⁹	2014	2014 Cerebral Edema
"Palliative and End-of-Life Care in Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association" ¹⁰	2014	2014 Palliative Care
"Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association" ¹¹	2014	2014 Secondary Prevention
"Clinical Performance Measures for Adults Hospitalized With Acute Ischemic Stroke: Performance Measures for Healthcare Professionals From the American Heart Association/American Stroke Association" ¹²	2014	N/A
"Part 15: First Aid: 2015 American Heart Association and American Red Cross Guidelines Update for First Aid" ¹³	2015	2015 CPR/ECC
"2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association" ¹⁴	2015erican Heart Association	Stroke
"Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic- Stroke: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association" ¹⁵	2015	2015 IV Alteplase
"Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association" ¹⁶	2016	2016 Rehab Guidelines

ACC indicates American College of Cardiology; AHA, American Heart Association; AIS, acute ischemic stroke; CPR, cardiopulmonary resuscitation; ECC, emergency cardiovascular care; HRS, Heart Rhythm Society; IV, intravenous; and N/A, not applicable.

Table 3. Continued

ACC	American College of Cardiology	ICH
AHA	American Heart Association	IPC
AIS	Acute ischemic stroke	IV
ARD	Absolute risk difference	LDL-C
ASCVD	Atherosclerotic cardiovascular disease	LMWH
ASPECTS	Alberta Stroke Program Early Computed Tomography Score	LOE LVO
BP	Blood pressure	M1
CEA	Carotid endarterectomy	M2
CeAD	Cervical artery dissection	M3
CI	Confidence interval	MCA
СМВ	Cerebral microbleed	МІ
COR	Class of recommendation	MRA
CS	Conscious sedation	MRI
СТ	Computed tomography	mRS
CTA	Computed tomographic angiography	mTICI
CTP	Computed tomographic perfusion	NCCT
DTN	Door-to-needle	NIHSS
DVT	Deep vein thrombosis	NINDS
DW-MRI	Diffusion-weighted magnetic resonance imaging	OR
ED	Emergency department	OSA
EMS	Emergency medical services	RCT
EVT	Endovascular therapy	RR 🕇
GA	General anesthesia	rtPA
GWTG	Get With The Guidelines	sICH
HB0	Hyperbaric oxygen	
HR	Hazard ratio	TJC
		11511

Table 3. Abbreviations in This Guideline

ICH	Intracerebral hemorrhage
IPC	Intermittent pneumatic compression
IV	Intravenous
LDL-C	Low-density lipoprotein cholesterol
LMWH	Low-molecular-weight heparin
LOE	Level of evidence
LVO	Large vessel occlusion
M1	Middle cerebral artery segment 1
M2	Middle cerebral artery segment 2
M3	Middle cerebral artery segment 3
MCA	Middle cerebral artery
MI	Myocardial infarction
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
mRS	Modified Rankin Scale
mTICI	Modified Thrombolysis in Cerebral Infarction
NCCT	Noncontrast computed tomography
NIHSS	National Institutes of Health Stroke Scale
NINDS	National Institute of Neurological Disorders and Stroke
OR	Odds ratio
OSA	Obstructive sleep apnea American
RCT	Randomized clinical trial Association.
RR	Relative risk
rtPA	recombinant tissue-type plasminogen activator
sICH	Symptomatic intracerebral hemorrhage
TIA	Transient ischemic attack
TJC	The Joint Commission
UFH	Unfractionated heparin

(Continued)

1. Prehospital Stroke Management and Systems of Care

1.1. Prehospital Systems

1.1. Prehospital Systems	COR	LOE	New, Revised, or Unchanged
1. Public health leaders, along with medical professionals and others, should design and implement public education programs focused on stroke systems and the need to seek emergency care (by calling 9-1-1) in a rapid manner. These programs should be sustained over time and designed to reach racially/ethnically, age, and sex diverse populations.	I	B-R	Recommendation revised from 2013 Stroke Systems of Care. COR and LOE added.
Early stroke symptom recognition is essential for seeking timely care. Unfo warning signs and risk factors in the United States remains poor. Blacks an lower stroke awareness than the general population and are at increased ri care. ¹⁷ These factors may contribute to the disparities in stroke outcomes. J public awareness interventions are variably effective by age, sex, and racia stroke education campaigns should be designed in a targeted manner to op	See Tables I and II in online Data Supplement 1.		
2. Activation of the 9-1-1 system by patients or other members of the public is strongly recommended. 9-1-1 dispatchers should make stroke a priority dispatch, and transport times should be minimized.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Emergency medical services (EMS) use by stroke patients has been independ emergency department (ED) arrival (onset-to-door time \leq 3 hours; adjusted of confidence interval [CI], 1.93–2.08), quicker ED evaluation (more patients wit minutes; OR, 1.89; 95% CI, 1.78–2.00), more rapid treatment (more patients \leq 60 minutes; OR, 1.44; 95% CI, 1.28–1.63), and more eligible patients being \leq 2 hours (67% versus 44%; OR, 1.47; 95% CI, 1.33–1.64), ¹⁸ yet only ~60% Men, blacks, and Hispanics are less likely to use EMS. ^{17,19} Thus, persistent ef 9-1-1 or similar emergency system by patients or other members of the publ are warranted.	See Table I in online Data Supplement 1.		
3. To increase both the number of patients who are treated and the quality of care, educational stroke programs for physicians, hospital personnel, and EMS personnel are recommended.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
On 9-1-1 activation, EMS dispatch and clinical personnel should prioritize the on-scene times, and transport the patient as quickly as possible to the most US-based analysis of EMS response times found that median EMS response to 184 179 cases in which EMS provider impression was stroke was 36 minutes minutes). ²⁰ On-scene time (median, 15 minutes) was the largest component on toted for patients 65 to 74 years of age, whites, and women and in nonurbar stroke was associated with minimally faster response times (36.0 versus 36. 52% of cases were identified by dispatch as stroke.	See Table I in online Data Supplement 1.		

1.2. EMS Assessment and Management

1.2. EMS Assessment and Management	COR	LOE	New, Revised, or Unchanged
1. The use of a stroke assessment system by first aid providers, including EMS dispatch personnel, is recommended.	I B-NR	Recommendation reworded for clarity from 2015 CPR/ECC. Class and LOE unchanged.	
			See Table LXXXIII in online Data Supplement 1 for original wording.
EMS personnel should begin the initial management of stroke in the field. Implementation of a stroke protocol to be used by EMS personnel is strongly encouraged.	I	B-NR	Recommendation revised from 2013 AIS Guidelines.
In 1 study, the positive predictive value for a hospital discharge diagnosis of stroke/transient ischemic attack (TIA) among 900 cases for which EMS dispatch suspected stroke was 51% (95% Cl, 47–54), and the positive predictive value for ambulance personnel impression of stroke was 58% (95% Cl, 52–64). ²¹ In another study of 21 760 dispatches for stroke, the positive predictive value of the dispatch stroke/TIA symptoms identification was 34.3% (95% Cl, 33.7–35.0), and the sensitivity was 64.0% (95% Cl, 63.0–64.9). ²² In both cases, use of a prehospital stroke scale improved stroke identification, but better stroke identification tools are needed in the prehospital setting.			See Table III in online Data Supplement 1.

1.2. EMS Assessment and Management (Continued)	COR	LOE	New, Revised, or Unchanged
3. EMS personnel should provide prehospital notification to the receiving hospital that a suspected stroke patient is en route so that the appropriate hospital resources may be mobilized before patient arrival.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
In the Get With The Guidelines (GWTG) registry, EMS personnel provided prearrival notification to the destination ED for 67% of transported stroke patients. EMS prenotification was associated with increased likelihood of alteplase treatment within 3 hours (82.8% versus 79.2%), shorter door-to-imaging times (26 versus 31 minutes), shorter DTN times (78 versus 80 minutes), and shorter symptom onset-to-needle times (141 versus 145 minutes). ²³			See Table I in online Data Supplement 1.

1.3. EMS Systems

1.3. EMS Systems	COR	LOE	New, Revised, or Unchanged
1. EMS leaders, in coordination with local, regional, and state agencies and in consultation with medical authorities and local experts, should develop triage paradigms and protocols to ensure that patients with a known or suspected stroke are rapidly identified and assessed by use of a validated and standardized instrument for stroke screening, such	I	B-NR	Recommendation reworded for clarity from 2013 Stroke Systems of Care. Class and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
as the FAST (face, arm, speech test) scale, Los Angeles Prehospital Stroke Screen, or Cincinnati Prehospital Stroke Scale.			See Table LXXXIII in online Data Supplement 1 for original wording.
			See Table IV in online Data Supplement 1.
2. Regional systems of stroke care should be developed. These should consist of the following: (a) Healthcare facilities that provide initial emergency care, including administration of IV alteplase, and, (b) Centers capable of performing endovascular stroke treatment with comprehensive periprocedural care to which rapid transport can be arranged when appropriate.	I	A	Recommendation reworded for clarity from 2015 Endovascular. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording. Association
3. Patients with a positive stroke screen and/or a strong suspicion of stroke should be transported rapidly to the closest healthcare facilities that can capably administer IV alteplase.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. See Table LXXXIII in online Data Supplement 1 for original wording.
The 2013 recommendation referred to initial emergency care as described el specified administration of IV alteplase as part of this care. The current recombut reworded to make this clear.			
4. When several IV alteplase-capable hospital options exist within a defined geographic region, the benefit of bypassing the closest to bring the patient to one that offers a higher level of stroke care, including mechanical thrombectomy, is uncertain. Further research is needed.	llb	B-NR	New recommendation.
At least 6 stroke severity scales targeted at recognition of large vessel occurs to facilitate transfer to endovascular centers have been published. ^{24–29} The p based on published literature was recently compared. ³ All the scales were ini confirmed stroke cases or selected prehospital cases, and there has been on in the prehospital setting. For prehospital patients with suspected LVO by a s Lifeline Severity–based Stroke Triage Algorithm for EMS ³⁰ recommends direc stroke center if the travel time to the comprehensive stroke center is <15 and the travel time to the closest primary stroke center or acute stroke-ready hoss is insufficient evidence to recommend 1 scale over the other or a specific thr which bypass of a primary stroke center or acute stroke-ready hospital and the anticipated delays in transport for mechanical thrombectomy in eligit nonendovascular center, the Mission: Lifeline algorithm may be a reasonable Customization of the guideline to optimize patient outcomes will be needed to factors, including the availability of endovascular centers, door in–door out ti centers, interhospital transport times, and DTN and door-to-puncture times. I regional quality review, including EMS agencies and hospitals, is recommend algorithms.	See Table V in online Data Supplement 1.		

1.4. Hospital Stroke Capabilities

1.4. Hospital Stroke Capabilities	COR	LOE	New, Revised, or Unchanged
 Certification of stroke centers by an independent external body, such as Center for Improvement in Healthcare Quality, Det Norske Veritas, Healthcare Facilities Accreditation Program, and The Joint Commission (TJC),* or a state health department, is recommended. Additional medical centers should seek such certification. *AHA has a cobranded, revenue-generating stroke certification with TJC. 	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Data support the development of stroke centers to improve patient care and o quality of care are associated with differences in certifying organization. Betw 477 297 AIS admissions from 977 certified primary stroke centers (73.8% TJC) Healthcare Facilities Accreditation Program, and 21.3% state based) participa Composite care quality was generally similar among the 4 groups of hospitals stroke centers underperformed TJC-certified primary stroke centers in a few H use were higher in TJC and Det Norske Veritas (9.0% and 9.8%) and lower in Accreditation Program-certified hospitals (7.1% and 5.9%) (<i>P</i> <0.0001). DTN t Healthcare Facilities Accreditation Program hospitals. State primary stroke center adjusted mortality (0R, 1.23; 95% CI, 1.07–1.41) compared with TJC-certified	See Table VI in online Data Supplement 1.		

1.5. Hospital Stroke Teams

1.5. Hospital Stroke Teams	COR	LOE	New, Revised, or Unchanged
1. An organized protocol for the emergency evaluation of patients with suspected stroke is recommended.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. It is recommended that DTN time goals be established. A primary goal of achieving DTN times within 60 minutes in \geq 50% of AIS patients treated with IV alteplase should be established.	I	B-NR	Recommendation revised from 2013 AIS Guidelines. American Heart Stroke
In GWTG-Stroke hospitals, median DTN time for alteplase administration decreation range, 60–98 minutes) during the 2003 to 2009 preintervention period to 651–87 minutes) during the 2010 to 2013 postintervention period (P <0.001). T patients having DTN times of ≤60 minutes increased from 26.5% (95% CI, 40.8–41.7) (P <0.001). Comparing the quarter immediately before the interver postintervention quarter (quarter 3 of 2013) showed that DTN times of ≤60 m Cl, 27.8–31.5) to 53.3% (95% Cl, 51.5–55.2) (P <0.001). ³⁵ In a subsequent stufform 2014 to 2015, 59.3% of patients received IV alteplase within a DTN times	See Table VII in online Data Supplement 1.		
3. It may be reasonable to establish a secondary DTN time goal of achieving DTN times within 45 minutes in \geq 50% of patients with AIS who were treated with IV alteplase.	llb	C-EO	New recommendation.
In a cohort of 888 GWTG-Stroke hospitals surveyed between June 2014 and ischemic stroke were treated with IV alteplase within 4.5 hours of symptom of time was 56 minutes (interquartile range, 42–75 minutes), with 30.4% treate arrival. ³⁶ This recommendation mirrors Target: Stroke phase II objectives. ³⁷	See Table VII in online Data Supplement 1.		
4. Designation of an acute stroke team that includes physicians, nurses, and laboratory/radiology personnel is recommended. Patients with stroke should have a careful clinical assessment, including neurological examination.	I	B-NR	Recommendation wording modified from 2013 AIS Guidelines to match Class I stratifications. Class unchanged. LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
5. Multicomponent quality improvement initiatives, which include ED education and multidisciplinary teams with access to neurological expertise, are recommended to safely increase IV thrombolytic treatment.	I	A	New recommendation.
Multicomponent quality improvement programs to improve stroke care have der alteplase use in the community hospital setting. The US cluster-randomized Treatment Through Interventional Change Tactics) demonstrated increased rate: patients. In the intervention group hospitals, alteplase use increased from 59 of 191 of 7288 (2.62%) after intervention. This compared favorably with the chang 65 of 5957 (1.09%) to 120 of 6989 (1.72%), with a relative risk (RR) of 1.68 (95 was also demonstrated with symptomatic intracranial hemorrhage (within 36 ho	See Tables VIII and IX in online Data Supplement 1.		

1.6. Telemedicine

1.6. Telemedicine	COR	LOE	New, Revised, or Unchanged
1. For sites without in-house imaging interpretation expertise, teleradiology systems approved by the US Food and Drug Administration are recommended for timely review of brain imaging in patients with suspected acute stroke.	I	A	Recommendation revised from 2013 AIS Guidelines.
2. When implemented within a telestroke network, teleradiology systems approved by the US Food and Drug Administration are useful in supporting rapid imaging interpretation in time for IV alteplase administration decision making.	I	A	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE revised. See Table LXXXIII in online Data Supplement 1 for original wording.
Studies of teleradiology to read brain imaging in acute stroke have successfu between telestroke neurologists, radiologists, and neuroradiologists over the contraindications to IV alteplase; and reliability of telestroke radiological evalu	presence or absen		See Table X in online Data Supplement 1.
3. Because of the limited distribution and availability of neurological, neurosurgical, and radiological expertise, the use of telemedicine/ telestroke resources and systems can be beneficial and should be supported by healthcare institutions, governments, payers, and vendors as one method to ensure adequate 24/7 coverage and care of acute stroke patients in a variety of settings.	lla	C-EO	Recommendation wording modified from 2013 Stroke Systems of Care to match Class Ila stratifications. COR and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
4. Telestroke/teleradiology evaluations of AIS patients can be effective for correct IV alteplase eligibility decision making.	lla	B-R	New recommendation.
The STRokEDOC (Stroke Team Remote Evaluation Using a Digital Observation the hypothesis that telemedicine consultations, which included teleradiology, resulted in statistically significantly more accurate IV alteplase eligibility decis symptoms and signs of an acute stroke syndrome in EDs. ⁴⁶	compared with te	ephone-only	See Table XI in online Data Supplement 1.
5. Administration of IV alteplase guided by telestroke consultation for patients with AIS may be as safe and as beneficial as that of stroke centers.	llb	B-NR	New recommendation. American American Heart Stroke Association Association.
A systematic review and meta-analysis was performed to evaluate the safety delivered through telestroke networks in patients with AIS. Symptomatic intra were similar between patients subjected to telemedicine-guided IV alteplase at stroke centers. There was no difference in mortality or in functional independent telestroke-guided and stroke center-managed patients. The findings indicate telestroke networks is safe and effective in the 3-hour time window. ⁴⁷	acerebral hemorrha and those receivin endence at 3 mont	age (sICH) rates g IV alteplase ns between	See Table XII in online Data Supplement 1.
6. Providing alteplase decision-making support via telephone consultation to community physicians is feasible and safe and may be considered when a hospital has access to neither an in-person stroke team nor a telestroke system.	llb	C-LD	New recommendation.
The advantages of telephone consultations for patients with acute stroke syn use, simplicity, availability, portability, short consultation time, and facile imp		lity, history of	See Table XIII in online Data Supplement 1.
7. Telestroke networks may be reasonable for triaging patients with AIS who may be eligible for interfacility transfer in order to be considered for acute mechanical thrombectomy.	llb	B-NR	New recommendation.
An observational study compared clinical outcomes of endovascular treat anterior circulation stroke transferred after teleconsultation and those dire center. The study evaluated 151 patients who underwent emergency EVT these, 48 patients (31.8%) were transferred after teleconsultation, and 10 through an ED. Transferred patients were younger, received IV alteplase m time from stroke onset to EVT initiation, and tended to have lower rates of hemorrhage and mortality than directly admitted patients. Similar rates of functional outcomes were observed in patients treated by telestroke and tt Telestroke networks may enable the triage and the delivery of EVT to selec transferred from remote hospitals. ⁴⁹	ectly admitted to a for anterior circula (3 (68.2%) were an nore frequently, ha symptomatic intri- reperfusion and f hose who were di	tertiary stroke ation stroke. Of dmitted primarily ad prolonged acranial avorable rectly admitted.	See Table XII in online Data Supplement 1.

1.7. Organization and Integration of Components

1.7. Organization and Integration of Components	COR	LOE	New, Revised, or Unchanged
 It may be useful for primary stroke centers and other healthcare facilities that provide initial emergency care, including administration of IV alteplase, to develop the capability of performing emergency noninvasive intracranial vascular imaging to most appropriately select patients for transfer for endovascular intervention and to reduce the time to EVT. 	lib	C-LD	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Between 2006 and 2010, the proportion of ischemic strokes undergoing con (CTA) increased from 3.8% to 9.1% (P <0.0001). CT perfusion (CTP) increase same period (P <0.0001). Reperfusion treatment was more common among (13.0%) and CTP (17.6%) compared with those with CT of the head alone (4. considering implementation of multimodal CT imaging at small or remote act and realistic expectations for gains in efficiency should be taken into account	d from 0.05% to 2. those who were im 0%; <i>P</i> <0.0001). ⁵⁰ f cess hospitals, reso	9% over the aged with CTA However, when	
2. Mechanical thrombectomy requires the patient to be at an experienced stroke center with rapid access to cerebral angiography, qualified neurointerventionalists, and a comprehensive periprocedural care team. Systems should be designed, executed, and monitored to emphasize expeditious assessment and treatment. Outcomes for all patients should be tracked. Facilities are encouraged to define criteria that can be used to credential individuals who can perform safe and timely intra-arterial revascularization procedures.	I	C-EO	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
3. All hospitals caring for stroke patients within a stroke system of care should develop, adopt, and adhere to care protocols that reflect current care guidelines as established by national and international professional organizations and state and federal agencies and laws.	I	C-EO	Recommendation unchanged from 2013 Stroke Systems of Care. COR and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
4. Different services within a hospital that may be transferring patients through a continuum of care, as well as different hospitals that may be transferring patients to other facilities, should establish hand-off and transfer protocols and procedures that ensure safe and efficient patient care within and between facilities. Protocols for interhospital transfer of patients should be established and approved beforehand so that efficient patient transfers can be accomplished at all hours of the day and night.	I	C-EO	Recommendation unchanged from 2013 Stroke Systems of Care: COR and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
5. It may be beneficial for government agencies and third-party payers to develop and implement reimbursement schedules for patients with acute stroke that reflect the demanding care and expertise that such patients require to achieve an optimal outcome, regardless of whether they receive a specific medication or procedure.	llb	C-EO	Recommendation revised from 2013 Stroke Systems of Care.
Multiple studies evaluating fibrinolytic therapy and mechanical thrombectom have demonstrated substantial cost-effectiveness of acute stroke treatment mechanical thrombectomy era data demonstrate that, in the United States, c million would be realized if the proportion of all ischemic stroke patients rece 8%. This excludes any gain from increased quality-adjusted life-years gained economic and patient value. Before the implementation of Centers for Medic related group 559 payment in 2005, treatment of acute stroke was economic level because of a high hospital cost-reimbursement ratio. Diagnosis-related cost-reimbursement ratio for stroke care. In a single-hospital study, this ratio 0.98–2.28) before diagnosis-related group 559 to 0.82 (95% CI, 0.66–0.97) The subsequent years corresponded to a period of rapid growth in the numb increasing total stroke treatment cases. Addressing emerging economic barr acute stroke care complexity evolves. ^{51–56}	untries. Pre– roximately US \$30 was increased to endous additional vices diagnosis- t a hospital bly altered the .41 (95% CI, ated group 559. e centers and		

1.8. Establishment of Data Repositories

1.8. Establishment of Data Repositories	COR	LOE	New, Revised, or Unchanged
 Participation in a stroke data repository is recommended to promote consistent adherence to current treatment guidelines, to allow continuous quality improvement, and to improve patient outcomes. 	I	B-NR	New recommendation.
In GWTG-Stroke hospitals, participation in a stroke data repository as 1 part of a quality improvement process was associated with improved timeliness of IV alteplase administration after AIS, lower in-hospital mortality and intracranial hemorrhage rates, and an increase in the percentage of patients discharged home. ^{35,57}			See Table XIV in online Data Supplement 1.

1.9. Stroke System Care Quality Improvement Process

1.9. Stroke System Care Quality Improvement Process	COR	LOE	New, Revised, or Unchanged
1. Healthcare institutions should organize a multidisciplinary quality improvement committee to review and monitor stroke care quality benchmarks, indicators, evidence-based practices, and outcomes. The formation of a clinical process improvement team and the establishment of a stroke care data bank are helpful for such quality of care assurances. The data repository can be used to identify the gaps or disparities in quality stroke care. Once the gaps have been identified, specific interventions can be initiated to address these gaps or disparities.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
In GWTG-Stroke hospitals, a multidisciplinary quality improvement committee process, was associated with improved timeliness of IV alteplase administrat mortality and intracranial hemorrhage rates, and an increase in the percenta Identification of stroke treatment barriers with targeted interventions has der stroke treatment in community hospitals. ³⁸	tion after AIS, lowe ge of patients discl	r in-hospital harged home. ^{35,57}	See Tables VIII and IX in online Data Supplement 1.
2. Continuous quality improvement processes, implemented by each major element of a stroke system of care and the system as a whole, can be useful in improving patient care or outcomes.	lla	B-NR	Recommendation revised from 2013 Stroke Systems of Care. Class and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
3. Stroke outcome measures should include adjustments for baseline severity.	I	B-NR	Recommendation revised from 2013 Stroke Systems of Care. Class and LOE added to conform with ACC/AHA 2015 Recommendation Classification System.
Data indicate continuous quality improvement efforts along the stroke speci- identification to EMS activation, ED evaluation, stroke team activation, and improving outcomes. ^{35,38,57} Stroke outcome measures are strongly influence measured by the National Institutes of Health Stroke Scale (NIHSS). ^{58–61} Oth outcomes include age, blood glucose, and infarct on imaging. ⁶¹ Quality imp these predictors in order to have meaningful comparisons between stroke	poststroke care, o ed by baseline stro per identified predi provement efforts s	an be useful in ke severity as ctors of poor	See Tables VIII, IX, and XIV in online Data Supplement 1.

2. Emergency Evaluation and Treatment

2.1. Stroke Scales

2.1. Stroke Scales	COR	LOE	New, Revised, or Unchanged
1. The use of a stroke severity rating scale, preferably the NIHSS, is recommended.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Formal stroke scores or scales such as the NIHSS (Table 4) may be performed rapidly, have demonstrated utility, and may be administered by a broad spectrum of healthcare providers with accuracy and reliability. ^{63,64} Use of a standardized scale quantifies the degree of neurological deficit, facilitates communication, helps identify patients for thrombolytic or mechanical intervention, allows objective measurement of changing clinical status, and identifies those at higher risk for complications such as intracerebral hemorrhage (ICH). ^{59–61,65}			See Table III in online Data Supplement 1.

Tested Item	Title	Responses and Scores
1A	Level of consciousness	0—Alert
		1—Drowsy
		2—Obtunded
		3—Coma/unresponsive
1B	Orientation questions (2)	0—Answers both correctly
		1—Answers 1 correctly
		2—Answers neither correctly
10	Response to commands (2)	0—Performs both tasks correctly
		1—Performs 1 task correctly
		2—Performs neither
2	Gaze	0—Normal horizontal movements
2		1—Partial gaze palsy
0	Viewel fielde	2—Complete gaze palsy
3	Visual fields	0—No visual field defect
		1—Partial hemianopia
		2—Complete hemianopia
		3—Bilateral hemianopia
4	Facial movement	0—Normal
		1—Minor facial weakness
		2—Partial facial weakness
		3—Complete unilateral palsy
5	Motor function (arm)	0—No drift Heart Strok
	a. Left	1—Drift before 10 s
	b. Right	2—Falls before 10 s
		3—No effort against gravity
		4—No movement
6	Motor function (leg)	0—No drìft
	a. Left	1—Drift before 5 s
	b. Right	2—Falls before 5 s
		3—No effort against gravity
		4—No movement
7	Limb ataxia	0—No ataxia
		1—Ataxia in 1 limb
		2—Ataxia in 2 limbs
8	Sensory	0—No sensory loss
		1—Mild sensory loss
		2—Severe sensory loss
9	Language	0—Normal
-		1—Mild aphasia
		2—Severe aphasia
		3—Mute or global aphasia
10	Articulation	0—Normal
10	Articulation	
		1—Mild dysarthria
		2—Severe dysarthria
11	Extinction or inattention	0—Absent
		1—Mild loss (1 sensory modality lost)
		2—Severe loss (2 modalities lost)

Table 4. National Institutes of Health Stroke Scale

Adapted from Lyden et al.⁶² Copyright © 1994, American Heart Association, Inc.

2.2. Brain Imaging

2.2. Brain Imaging	COR	LOE	New, Revised, or Unchanged
 All patients admitted to hospital with suspected acute stroke should receive brain imaging evaluation on arrival to hospital. In most cases, noncontrast CT (NCCT) will provide the necessary information to make decisions about acute management. 	I	B-NR	Recommendation revised from 2013 AIS Guidelines.
Diagnostic testing is most cost-effective when it leads to a change in treatment a change in treatment. Although diffusion-weighted magnetic resonance imagin CT for detecting AIS, ^{66,67} routine use in all patients with AIS is not cost-effective. ⁶ with acute stroke has been shown to be cost-effective primarily because of the or avoidance of antithrombotic treatment in these patients. ⁷⁰ In many patients, the made accurately on the basis of the clinical presentation and either a negative N changes, which can be detected in the majority of patients with careful attention NCCT such as those with puzzling clinical presentations or those with uncertain carotid endarterectomy (CEA) or stenting, demonstration of an area of restricted change in treatment that improves outcomes. There are inadequate data at this benefit from DW-MRI, and more research is needed to determine criteria for its patients.	g (DW-MRI) is more ^{8,69} NCCT scanning detection of acute IC diagnosis of ischem CCT or one showing . ^{66,71,72} In some pati clinical stroke locali diffusion on DW-MI time to establish wi	e sensitive than of all patients CH and the nic stroke can be g early ischemic ents with negative ization for early RI may lead to a hich patients will	See Table XV in online Data Supplement 1.
2. Systems should be established so that brain imaging studies can be performed within 20 minutes of arrival in the ED in at least 50% of patients who may be candidates for IV alteplase and/or mechanical thrombectomy.	I	B-NR	New recommendation.
The benefit of both IV alteplase and mechanical thrombectomy is time depend therapeutic window leading to bigger proportional benefits. ^{32,73} A brain imaging stud part of the initial evaluation of patients who are potentially eligible for these therapi presentation to initial brain imaging can help to reduce the time to treatment initiat or mean door-to-imaging times of ≤ 20 minutes can be achieved in a variety	ly to exclude ICH is r es. Reducing the tin ion. Studies have sh	ecommended as ne interval from ED lown that median	See Table XVI in online Data Supplement 1.
3. There remains insufficient evidence to identify a threshold of acute CT hypoattenuation severity or extent that affects treatment response to IV alteplase. The extent and severity of acute hypoattenuation or early ischemic changes should not be used as a criterion to withhold therapy for such patients who otherwise qualify.	III: No Benefit	B-R	Recommendation revised from 2015 IV Alteplase, American Heart Stroke Association
Analysis of data from randomized clinical trials (RCTs) of IV alteplase for AIS has s deleterious interaction on clinical outcomes between alteplase treatment and hypoattenuation. ^{77–81} In the National Institute of Neurological Disorders (NINC plasminogen activator) trial, subsequent analysis showed there was no significant by the following findings on baseline CT: early ischemic changes (loss of gray/whit or compression of cerebrospinal fluid spaces), the Alberta Stroke Program Ea (ASPECTS), or the Van Swieten score for leukoaraiosis. ⁷⁸ In both ECASS (European IST (International Stroke Trial)-3, there was no interaction with baseline ASPECTS ECASS II, PROACT (Intra-Arterial Prourokinase for Acute Ischemic Stroke) II, and IST for IV alteplase with functional outcomes for ASPECTS subgroups. ⁷⁷ A pooled analy and IST-3 showed no significant interaction between baseline CT leukoaraio Patients with baseline CT hypoattenuation of greater than one third of the m were excluded from both ECASS I and ECASS II but not from NINDS rtPA and	baseline CT hypod DS) rtPA (recombin modification of the e matter distinction, rly Computed Tom Cooperative Acute S S. ^{77,79} A meta-analy T-3 showed no signi rsis of NINDS rtPA, E sis and the effect iddle cerebral arte	tensity or ant tissue-type effect of alteplase hypoattenuation, ography Score Stroke Study) II and sis of NINDS rtPA, ficant interactions CASS I, ECASS II, of IV alteplase. ⁸²	See Table XVII in online Data Supplement 1.
4. The CT hyperdense MCA sign should not be used as a criterion to withhold IV alteplase from patients who otherwise qualify.	III: No Benefit	B-R	New recommendation.
Analyses of data from RCTs of IV alteplase for AIS have shown no statistically si clinical outcomes between alteplase treatment and the hyperdense MCA sign trial, there was no interaction between hyperdense MCA sign and treatment for any of the 4 clinical scales (modified Rankin Scale [mRS] score 0–1, NIHSS sco Outcome Scale score 0–1) or for death. ⁸³ In IST-3, no significant interaction of t benefit of alteplase measured by the Oxford Handicap Score at 6 months was o	on baseline CT. In outcomes at 3 mo re 0–1, Barthel Ind the hyperdense MC	n the NINDS rtPA nths measured by ex ≥95, Glasgow	See Table XVIII in online Data Supplement 1.
 Routine use of magnetic resonance imaging (MRI) to exclude cerebral microbleeds (CMBs) before administration of IV alteplase is not recommended. 	III: No Benefit	B-NR	New recommendation.
No RCTs of IV alteplase in AIS with baseline MRI to identify CMBs have been of the effect of baseline CMB on the treatment effect of alteplase with CMB is the association of baseline CMBs on the risk of sICH after IV alteplase have sI in patients with baseline CMBs (OR, 2.18; 95% CI, 1.12–4.22; OR, 2.36; 95% in patients with baseline CMBs is not more common (6.1%, 6.5%) ^{85,86} than in meta-analysis reported that the sICH rate was 40% in patients with >10 CME events in 15 patients, and patients with >10 CMBs constituted only 0.8% of the site of the sit	available. Two me hown that sICH is r o Cl, 1.21–4.61). ^{85,8} the NINDS rtPA tri Bs, but this was bas	eta-analyses of nore common ¹⁶ However, sICH al (6.4%). ⁸⁷ One	See Table XIX in online Data Supplement 1.

2.2. Brain Imaging (Continued)	COR	LOE	New, Revised, or Unchanged
6. Use of imaging criteria to select ischemic stroke patients who awoke with stroke or have unclear time of symptom onset for treatment with IV alteplase is not recommended outside a clinical trial.	III: No Benefit	B-NR	Recommendation unchanged from 2015 IV Alteplase. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
 Multimodal CT and MRI, including perfusion imaging, should not delay administration of IV alteplase. 	III: Harm	B-NR	New recommendation.
Analysis of trials using advanced, multimodal pretreatment imaging (includin imaging, diffusion-perfusion mismatch, or vessel imaging) for IV fibrinolytics clinical efficacy in patients with various pretreatment imaging biomarkers co markers. ^{88–95}	has failed to demo	nstrate	See Table XX and XXI in online Data Supplement 1.
8. For patients who otherwise meet criteria for EVT, a noninvasive intracranial vascular study is recommended during the initial imaging evaluation of the acute stroke patient, but should not delay IV alteplase if indicated. For patients who qualify for IV alteplase according to guidelines from professional medical societies, initiating IV alteplase before noninvasive vascular imaging is recommended for patients who have not had noninvasive vascular imaging as part of their initial imaging assessment for stroke. Noninvasive intracranial vascular imaging should then be obtained as quickly as possible.	I	A	Recommendation reworded for clarity from 2015 Endovascular. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.
A recent systematic review evaluated the accuracy of prediction instruments where confirmed ischemic stroke patients would be assessed by a neurologi ED, the authors suggested that the NIHSS is the best of the LVO prediction in analysis, a threshold of \geq 10 would provide the optimal balance between sent To maximize sensitivity (at the cost of lower specificity), a threshold of \geq 6 we specificity. However, even this low threshold misses some cases with LVO, we that false-positives will be common.	st or emergency pl struments. Accordi sitivity (73%) and s ould have 87% sen	nysician in the ing to their meta- specificity (74%). sitivity and 52%	
9. For patients who otherwise meet criteria for EVT, it is reasonable to proceed with CTA if indicated in patients with suspected intracranial LVO before obtaining a serum creatinine concentration in patients without a history of renal impairment.	lla	B-NR	New recommendation. American American Heart Stroke Association Association.
Analyses from a number of observational studies suggest that the risk of contr to CTA imaging is relatively low, particularly in patients without a history of re for these laboratory results may lead to delays in mechanical thrombectomy. ⁹¹	nal impairment. Mo		See Table XXII in online Data Supplement 1.
10. In patients who are potential candidates for mechanical thrombectomy, imaging of the extracranial carotid and vertebral arteries, in addition to the intracranial circulation, is reasonable to provide useful information on patient eligibility and endovascular procedural planning.	lla	C-EO	New recommendation.
Knowledge of vessel anatomy and presence of extracranial vessel dissection assist in planning endovascular procedures or identifying patients ineligible f tortuosity or inability to access the intracranial vasculature.			
11. Additional imaging beyond CT and CTA or MRI and magnetic resonance angiography (MRA) such as perfusion studies for selecting patients for mechanical thrombectomy in <6 hours is not recommended.	III: No Benefit	B-R	New recommendation.
Of the 6 RCTs that independently demonstrated clinical benefit of mechanical when performed <6 hours from stroke onset, 4 trials (REVASCAT [Randomize Solitaire FR Device Versus Best Medical Therapy in the Treatment of Acute S Large Vessel Occlusion Presenting Within Eight Hours of Symptom Onset, the Intention for Thrombectomy as Primary Endovascular Treatment], EXT Thrombolysis in Emergency Neurological Deficits—Intra-Arterial], and ESCAPE Core and Anterior Circulation Proximal Occlusion With Emphasis on Minimizir used some form of advanced imaging to determine eligibility, whereas 2 (THI Evaluation of Intra-Arterial Thrombectomy in Acute Ischemic Stroke] and MR Clinical Trial of Endovascular Treatment for AlS in the Netherlands]) ^{106,107} require of LVO. Because the last 2 studies independently demonstrated benefit in the based eligibility criteria could lead to the exclusion of patients who would therefore not indicated at this time. Further RCTs may be helpful to determ paradigms using CTP, CTA, and MRI perfusion and diffusion imaging, inclus collateral flow status, and penumbra, are beneficial for selecting patients for within 6 hours of symptom onset and have an ASPECTS score <6.	ed Trial of Revascu troke Due to Anteri], SWIFT PRIME [S END-IA [Extending E [Endovascular Tre- ng CT to Recanaliza RACE [Trial and Co CLEAN [Multicente uired only NCCT an treated group, add benefit from treat nine whether adva uding measures of	larization With or Circulation olitaire With the Time for eatment for Small ation Times]) ¹⁰²⁻¹⁰⁵ st Effectiveness er Randomized d demonstration itional imaging- ment and are unced imaging infarct core,	See Table XXIII in online Data Supplement 1.

2.2. Brain Imaging (Continued)	COR	LOE	New, Revised, or Unchanged
12. In selected patients with AIS within 6 to 24 hours of last known normal who have LVO in the anterior circulation, obtaining CTP, DW-MRI, or MRI perfusion is recommended to aid in patient selection for mechanical thrombectomy, but only when imaging and other eligibility criteria from RCTs showing benefit are being strictly applied in selecting patients for mechanical thrombectomy.	I	A	New recommendation.
The DAWN trial (Clinical Mismatch in the Triage of Wake Up and Late Present Neurointervention With Trevo) used clinical imaging mismatch (a combination CTP or DW-MRI) as an eligibility criterion to select patients with large anterior mechanical thrombectomy between 6 and 24 hours from last known normal. benefit in functional outcome at 90 days in the treatment group (mRS score 0 difference, 33%; 95% Cl, 21–44; posterior probability of superiority >0.999). Perfusion Imaging Evaluation for Understanding Stroke Evolution) used perfus core size as imaging criteria to select patients with large anterior circulation of the stress	n of NIHSS and ima r circulation vessel This trial demonst)–2, 49% versus 1 ¹⁰⁸ The DEFUSE 3 t sion-core mismatc	aging findings on occlusion for irated an overall 3%; adjusted irial (Diffusion and h and maximum	See Table XXIII in online Data Supplement 1.
seen well for mechanical thrombectomy. This trial showed a benefit in function treated group (mRS score 0–2, 44.6% versus 16.7%; RR, 2.67; 95% Cl, 1.60 independently demonstrated for the subgroup of patients who met DAWN elig who did not. DAWN and DEFUSE 3 are the only RCTs showing benefit of mech from onset. Therefore, only the eligibility criteria from these trials should be us future RCTs may demonstrate that additional eligibility criteria can be used to mechanical thrombectomy, at this time, the DAWN and DEFUSE 3 eligibility sl clinical practice.	onal outcome at 90 -4.48; <i>P</i> <0.0001) jibility criteria and hanical thrombector used for patient sel o select patients with) days in the ¹⁰⁹ Benefit was for the subgroup omy >6 hours ection. Although ho benefit from	
seen well for mechanical thrombectomy. This trial showed a benefit in function treated group (mRS score 0–2, 44.6% versus 16.7%; RR, 2.67; 95% Cl, 1.60 independently demonstrated for the subgroup of patients who met DAWN eling who did not. DAWN and DEFUSE 3 are the only RCTs showing benefit of mech from onset. Therefore, only the eligibility criteria from these trials should be us future RCTs may demonstrate that additional eligibility criteria can be used to mechanical thrombectomy, at this time, the DAWN and DEFUSE 3 eligibility sl	onal outcome at 90 -4.48; <i>P</i> <0.0001) jibility criteria and hanical thrombector used for patient sel o select patients with) days in the ¹⁰⁹ Benefit was for the subgroup omy >6 hours ection. Although ho benefit from	Recommendation revised from 2015 Endovascular.

2.3. Other Diagnostic Tests

2.3. Other Diagnostic Tests	COR	LOE	New, Revised, or Unchanged
1. Only the assessment of blood glucose must precede the initiation of IV alteplase in all patients.	I	B-R	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Recommendation was modified to clarify that it is only blood glucose that Other tests, for example, international normalized ratio, activated partial th count, may be necessary in some circumstances if there is suspicion of co low risk of unsuspected abnormal platelet counts or coagulation studies in treatment should not be delayed while waiting for hematologic or coagulat suspect an abnormal test.	nromboplastin tim bagulopathy. Given n a population, IV a	e, and platelet n the extremely alteplase	
2. Baseline ECG assessment is recommended in patients presenting with AIS, but should not delay initiation of IV alteplase.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
3. Baseline troponin assessment is recommended in patients presenting with AIS, but should not delay initiation of IV alteplase.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE revised. See Table LXXXIII in online Data Supplement 1

2.3. Other Diagnostic Tests (Continued)	COR	LOE	New, Revised, or Unchanged
4. Usefulness of chest radiographs in the hyperacute stroke setting in the absence of evidence of acute pulmonary, cardiac, or pulmonary vascular disease is unclear. If obtained, they should not unnecessarily delay administration of IV alteplase.	llb	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Additional support for this reworded recommendation from the 2013 AIS Guidelines comes from a cohort study of 615 patients, 243 of whom had chest x-ray done before IV thrombolytics. Cardiopulmonary adverse events in the first 24 hours of admission, endotracheal intubation in the first 7 hours, and in-hospital mortality were not different between the 2 groups. Patients with chest x-ray done before treatment had longer mean DTN times than those who did not (75.8 versus 58.3 minutes; <i>P</i> =0.0001). ¹¹²			See Table XXV in online Data Supplement 1.

3. General Supportive Care and Emergency Treatment

3.1. Airway, Breathing, and Oxygenation

3.1. Airway, Breathing, and Oxygenation	COR	LOE	New, Revised, or Unchanged
 Airway support and ventilatory assistance are recommended for the treatment of patients with acute stroke who have decreased consciousness or who have bulbar dysfunction that causes compromise of the airway. 	I	C-EO	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
 Supplemental oxygen should be provided to maintain oxygen saturation >94%. 	I	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. Supplemental oxygen is not recommended in nonhypoxic patients with AIS.	III: No Benefit	B-R	Recommendation unchanged from 2013 AIS Guidelines. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Additional support for this unchanged recommendation from the 2013 AIS Ge 8003 participants randomized within 24 hours of admission. There was no b days of oxygen by nasal cannula at 2 L/min (baseline O_2 saturation >93%) or \leq 93%) continuously for 72 hours or nocturnally for 3 nights. ¹¹³	enefit on functiona	l outcome at 90	See Table XXVI in online Data Supplement 1.
4. Hyperbaric oxygen (HBO) is not recommended for patients with AIS except when caused by air embolization.	III: No Benefit	B-NR	Recommendation revised from 2013 AIS Guidelines.
The limited data available on the utility of HBO therapy for AIS (not related to benefit. ¹¹⁴ HBO therapy is associated with claustrophobia and middle ear bar risk of seizures. ¹¹⁶ Given the confines of HBO chambers, the ability to closely also be compromised. HBO thus should be offered only in the context of a cli cerebral air embolism.	otrauma, ¹¹⁵ as well /adequately monito	l as an increased or patients may	See Table XXVII in online Data Supplement 1.

3.2. Blood Pressure

3.2. Blood Pressure	COR	LOE	New, Revised, or Unchanged
1. Hypotension and hypovolemia should be corrected to maintain systemic perfusion levels necessary to support organ function.	I	C-EO	New recommendation.
The blood pressure (BP) level that should be maintained in patients with AIS known. Some observational studies show an association between worse out others have not. ^{117–124} No studies have addressed the treatment of low BP in analysis of 12 studies comparing colloids with crystalloids, the odds of death Clinically important benefits or harms could not be excluded. There are no da parenteral fluid delivery. ¹²⁵ No studies have compared different isotonic fluids	comes and lower B patients with strok or dependence wa ata to guide volume	BPs, whereas e. In a systematic ere similar.	See Table XXVIII in online Data Supplement 1.

	COR	LOE	New, Revised, or Unchanged
2. Patients who have elevated BP and are otherwise eligible for treatment with IV alteplase should have their BP carefully lowered so that their systolic BP is <185 mm Hg and their diastolic BP is <110 mm Hg before IV fibrinolytic therapy is initiated.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
The RCTs of IV alteplase required the BP to be <185 mm Hg systolic and <11 and <180/105 mm Hg for the first 24 hours after treatment. Options to treat a AIS who are candidates for acute reperfusion therapy are given in Table 5. So that the risk of hemorrhage after administration of alteplase is greater in patients with more BP variability. ¹³³ The exact BP at which the risk of hemorr unknown. It is thus reasonable to target the BPs used in the RCTs of IV throm	arterial hypertensio ome observational ents with higher BI hage after thrombo	on in patients with studies suggest Ps ^{126–132} and in	See Table XXIX in online Data Supplement 1.
3. Until additional data become available, in patients for whom intra-arterial therapy is planned and who have not received IV thrombolytic therapy, it is reasonable to maintain BP \leq 185/110 mm Hg before the procedure.	lla	B-R	Recommendation revised from 2013 AIS Guidelines.
Of the 6 RCTs that each independently demonstrated clinical benefit of mech retrievers when performed <6 hours from stroke onset, 5 (REVASCAT, SWIFT and MR CLEAN ^{102-104,106,107}) had eligibility exclusions for BP >185/110 mm Hg, BP eligibility exclusion. DAWN also used an exclusion for BP >185/110 mm H management approaches in this setting are not available. Because the vast n RCTs had preprocedural BP managed below 185/110 mm Hg, it is reasonable	PRIME, EXTEND-I/ , The sixth, ESCAPE Ig. ¹⁰⁸ RCT data for o najority of patients	A,THRACE, E, ¹⁰⁵ had no optimal BP enrolled in these	See Table XXIII in online Data Supplement 1.
4. The usefulness of drug-induced hypertension in patients with AIS is not well established.	lib	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE revised.
			1
able 5. Options to Treat Arterial Hypertension in Patients Wit	h AIS Who Are	Candidates for	Acute Repetfusion Therapy*
		Candidates for	Acute Repetitusion Therapy*
Class IIb, LOE C-EO		Candidates for	Acute Repetfusion Therapy*
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18	5/110 mm Hg:	ZO	Heart Stroke
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or	5/110 mm Hg: 5 mg/h; when desi	ired BP reached, an	ljust to maintain proper BP limits; or
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1	5/110 mm Hg: 5 mg/h; when desi	ired BP reached, an	ljust to maintain proper BP limits; or
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1 Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until d	5/110 mm Hg: 5 mg/h; when desi	ired BP reached, an	ljust to maintain proper BP limits; or
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1 Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until d Other agents (eg, hydralazine, enalaprilat) may also be considered	5/110 mm Hg: 5 mg/h; when desi lesired BP reached	ired BP reached, ar ; maximum 21 mg,	ijust to maintain proper BP limits; or
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1 Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until d Other agents (eg, hydralazine, enalaprilat) may also be considered If BP is not maintained ≤185/110 mm Hg, do not administer alteplase	5/110 mm Hg: 5 mg/h; when desi lesired BP reached apy to maintain BP	ired BP reached, ac ; maximum 21 mg. ≤180/105 mm Hg	ijust to maintain proper BP limits; or
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1 Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until d Other agents (eg, hydralazine, enalaprilat) may also be considered If BP is not maintained ≤185/110 mm Hg, do not administer alteplase Management of BP during and after alteplase or other acute reperfusion thera	5/110 mm Hg: 5 mg/h; when desi lesired BP reached apy to maintain BP	ired BP reached, ac ; maximum 21 mg. ≤180/105 mm Hg	ijust to maintain proper BP limits; or
Class IIb, LOE C-E0 Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1 Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until d Other agents (eg, hydralazine, enalaprilat) may also be considered If BP is not maintained ≤185/110 mm Hg, do not administer alteplase Management of BP during and after alteplase or other acute reperfusion thera Monitor BP every 15 min for 2 h from the start of alteplase therapy, then e	5/110 mm Hg: 5 mg/h; when desi lesired BP reached apy to maintain BP	ired BP reached, ac ; maximum 21 mg. ≤180/105 mm Hg	ijust to maintain proper BP limits; or
Class IIb, LOE C-EO Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1 Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until d Other agents (eg, hydralazine, enalaprilat) may also be considered If BP is not maintained ≤185/110 mm Hg, do not administer alteplase Management of BP during and after alteplase or other acute reperfusion thera Monitor BP every 15 min for 2 h from the start of alteplase therapy, then e If systolic BP >180–230 mm Hg or diastolic BP >105–120 mm Hg:	5 mg/h; when desi 5 mg/h; when desi lesired BP reached apy to maintain BP very 30 min for 6 h	ired BP reached, ar ; maximum 21 mg, ≤180/105 mm Hg n, and then every h	ijust to maintain proper BP limits; or
Patient otherwise eligible for acute reperfusion therapy except that BP is >18 Labetalol 10–20 mg IV over 1–2 min, may repeat 1 time; or Nicardipine 5 mg/h IV, titrate up by 2.5 mg/h every 5–15 min, maximum 1 Clevidipine 1–2 mg/h IV, titrate by doubling the dose every 2–5 min until d Other agents (eg, hydralazine, enalaprilat) may also be considered If BP is not maintained ≤185/110 mm Hg, do not administer alteplase Management of BP during and after alteplase or other acute reperfusion thera Monitor BP every 15 min for 2 h from the start of alteplase therapy, then e If systolic BP >180–230 mm Hg or diastolic BP >105–120 mm Hg: Labetalol 10 mg IV followed by continuous IV infusion 2–8 mg/min; or	5/110 mm Hg: 5 mg/h; when desi lesired BP reached apy to maintain BP very 30 min for 6 h min, maximum 15	ired BP reached, au ; maximum 21 mg, ≤180/105 mm Hg h, and then every h mg/h; or	ljust to maintain proper BP limits; or h

If BP not controlled or diastolic BP >140 mm Hg, consider IV sodium nitroprusside

AIS indicates acute ischemic stroke; BP, blood pressure; IV, intravenous; and LOE, Level of Evidence.

*Different treatment options may be appropriate in patients who have comorbid conditions that may benefit from acute reductions in BP such as acute coronary event, acute heart failure, aortic dissection, or preeclampsia/eclampsia.

Data derived from Jauch et al.1

3.3. Temperature

3.3. Temperature	COR LOE		New, Revised, or Unchanged	
1. Sources of hyperthermia (temperature >38°C) should be identified and treated, and antipyretic medications should be administered to lower temperature in hyperthermic patients with stroke.	I	C-EO	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.	
Additional support for this recommendation unchanged from the 2013 AIS G retrospective cohort study conducted from 2005 to 2013 of patients admitter New Zealand, and the United Kingdom. Peak temperature in the first 24 hour with an increased risk of in-hospital death compared with normothermia in 9	See Tables XXX and XXXI in online Data Supplement 1.			
 The benefit of induced hypothermia for treating patients with ischemic stroke is not well established. Hypothermia should be offered only in the context of ongoing clinical trials. 	Recommendation revised from 2013 AIS Guidelines.			
Hypothermia is a promising neuroprotective strategy, but its benefit in patients with AIS has not been proven. Most studies suggest that induction of hypothermia is associated with an increase in the risk of infection, including pneumonia. ¹³⁵⁻¹³⁸ Therapeutic hypothermia should be undertaken only in the context of a clinical trial.			See Tables XXXII and XXXIII in online Data Supplement 1.	

3.4. Blood Glucose

3.4. Blood Glucose	COR	LOE	New, Revised, or Unchanged
1. Evidence indicates that persistent in-hospital hyperglycemia during the first 24 hours after AIS is associated with worse outcomes than normoglycemia and thus, it is reasonable to treat hyperglycemia to achieve blood glucose levels in a range of 140 to 180 mg/dL and to closely monitor to prevent hypoglycemia in patients with AIS.	lla	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
 Hypoglycemia (blood glucose <60 mg/dL) should be treated in patients with AIS. 	I	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

3.5. IV Alteplase

3.5. IV Alteplase	COR	LOE	New, Revised, or Unchanged
1. IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 minutes with initial 10% of dose given as bolus over 1 minute) is recommended for selected patients who may be treated within 3 hours of ischemic stroke symptom onset or patient last known well or at baseline state. Physicians should review the criteria outlined in Table 6 to determine patient eligibility.	I	A	Recommendation reworded for clarity from 2013 AIS Guidelines. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.
The safety and efficacy of this treatment when administered within the first 3 hours after stroke onset are solidly supported by combined data from multiple RCTs ^{90,139,140} and confirmed by extensive community experience in many countries. ¹⁴¹ The eligibility criteria for IV alteplase have evolved over time as its usefulness and true risks have become clearer. A recent AHA statement provides a detailed discussion of this topic. ¹⁵ Eligibility recommendations for IV alteplase in patients with AIS are summarized in Table 6. The benefit of IV alteplase is well established for adult patients with disabling stroke symptoms regardless of age and stroke severity. ^{73,142} Because of this proven benefit and the need to expedite treatment, when a patient cannot provide consent (eg, aphasia, confusion) and a legally authorized representative is not immediately available to provide proxy consent, it is justified to proceed with IV thrombolysis in an otherwise eligible adult patient with a disabling AIS. In a recent trial, a lower dose of IV alteplase (0.6 mg/kg) was not shown to be equivalent to standard-dose IV alteplase for the reduction of death and disability at 90 days. ¹⁴³ Main elements of postthrombolysis care are listed in Table 7.			See Table XXXIV in online Data Supplement 1.
2. IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 minutes with initial 10% of dose given as bolus over 1 minute) is also recommended for selected patients who can be treated within 3 and 4.5 hours of ischemic stroke symptom onset or patient last known well. Physicians should review the criteria outlined in Table 6 determine patient eligibility.	I	B-R	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
One trial (ECASS-III) specifically evaluating the efficacy of IV alteplase within 3 and 4.5 hours after symptom onset ¹⁴⁴ and pooled analysis of multiple trials testing IV alteplase within various time windows ^{90,139,140} support the value of IV thrombolysis up to 4.5 hours after symptom onset. ECASS-III excluded octogenarians, patients taking warfarin regardless of international normalized ratio, patients with combined history of diabetes mellitus and previous ischemic stroke, and patients with very severe strokes (NIHSS score >25) because of a perceived excessive risk of intracranial hemorrhage in those cases. However, careful analysis of available published data summarized in an AHA/American Stroke Association scientific statement indicates that these exclusion criteria from the trial may not be justified in practice (Table 6). ¹⁵			See Table XXXIV in online Data Supplement 1.

3.5. IV Alteplase (Continued)	COR	LOE	New, Revised, or Unchanged
3. For otherwise eligible patients with mild stroke presenting in the 3- to 4.5-hour window, treatment with IV alteplase may be reasonable. Treatment risks should be weighed against possible benefits.	llb	B-NR	New recommendation.
In ECASS III, there was no significant interaction of benefit (mRS score 0–1 at 9 stroke severity when patients were categorized by baseline NIHSS score of 0 to with a minor neurological deficit were excluded. Only 128 patients with an NIH and they were not analyzed separately. ¹⁴⁵ In SITS-ISTR (Safe Implementation o Stroke Thrombolysis Registry), good functional outcomes (mRS score 0–1 at 90 or the same in mild stroke treated in 0 to 3 and 3 to 4.5 hours. ¹⁴⁶ Similarly, in t outcomes, mortality, and risk of sICH were the same in mild stroke treated in 0	See Tables XXXV and XXXVI in online Data Supplement 1.		
 In otherwise eligible patients who have had a previously demonstrated small number (1–10) of CMBs on MRI, administration of IV alteplase is reasonable. 	lla	B-NR	New recommendation.
5. In otherwise eligible patients who have had a previously demonstrated high burden of CMBs (>10) on MRI, treatment with IV alteplase may be associated with an increased risk of sICH, and the benefits of treatment are uncertain. Treatment may be reasonable if there is the potential for substantial benefit.	llb	B-NR	New recommendation.
MRI with hemosiderin-sensitive sequences has shown that clinically silent Cl fourth of patients who have received IV alteplase. No RCTs of IV alteplase in <i>I</i> CMBs have been conducted, so no determination of the effect of baseline CM alteplase with CMB is available. Two meta-analyses of the association of bas IV alteplase have shown that sICH is more common in patients with baseline 4.22; OR, 2.36; 95% Cl, 1.21–4.61). ^{85,86} However, sICH in patients with baseline (6.1%, 6.5%) ^{85,86} than in the NINDS rtPA trial (6.4%). ⁸⁷ In patients with >10 Cl this is based on only 6 events in 15 patients, and patients with >10 Cl MBs cc Meta-analysis of the 4 studies that provided information on 3- to 6-month fu the presence of CMBs was associated with worse outcomes after IV alteplas CMBs (OR, 1.58; 95% Cl, 1.18–2.14; <i>P</i> =0.002). ⁸⁵ Thus, the presence of CMB chances of poor outcomes after IV alteplase, but it is unclear whether these benefit of thrombolysis. It is also unknown whether the location and number outcomes. These questions deserve further investigation.	See Table XIX in online Data Supplement 1.		
6. IV alteplase for adults presenting with an AIS with known sickle cell disease can be beneficial.	lla	B-NR	New recommendation.
A case-control analysis using the population from the AHA GWTG-Stroke registry, including 832 cases with sickle cell disease (all adults) and 3328 age-, sex-, and race-matched controls without sickle cell disease with similar severity of neurological deficits at presentation, showed that sickle cell disease did not have a significant impact on the safety or the outcome at discharge of treatment with IV alteplase. ¹⁴⁸			See Table XXXVII in online Data Supplement 1.
7. Abciximab should not be administered concurrently with IV alteplase.	III: Harm	B-R	Recommendation revised from 2013 AIS Guidelines.
8. IV alteplase should not be administered to patients who have received a treatment dose of low-molecular-weight heparin (LMWH) within the previous 24 hours.	III: Harm	B-NR	Recommendation reworded for clarity from 2015 IV Alteplase. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
The recommendation refers to full treatment doses and not to prophylactic of Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in "Intravenous alteplase in patients who have received a dose of LMWH within recommended. This applies to both prophylactic doses and treatment doses This statement was updated in a subsequently published erratum to specify apply to prophylactic doses.			
 The potential risks should be discussed during thrombolysis eligibility deliberation and weighed against the anticipated benefits during decision making. 	Recommendation and Class unchanged from 2015 IV Alteplase. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.		
10. Given the extremely low risk of unsuspected abnormal platelet counts or coagulation studies in a population, it is reasonable that urgent IV alteplase treatment not be delayed while waiting for hematologic or coagulation testing if there is no reason to suspect an abnormal test.	lla	B-NR	Recommendation and Class unchanged from 2015 IV Alteplase. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

3.5. IV Alteplase (Continued)	COR	LOE	New, Revised, or Unchanged
11. Treating clinicians should be aware that hypoglycemia and hyperglycemia may mimic acute stroke presentations and determine blood glucose levels before IV alteplase initiation. IV alteplase is not indicated for nonvascular conditions.	III: No Benefit	B-NR	Recommendation reworded for clarity from 2015 IV Alteplase. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
12. Because time from onset of symptoms to treatment has such a powerful impact on outcomes, treatment with IV alteplase should not be delayed to monitor for further improvement.	III: Harm	C-EO	Recommendation wording modified from 2015 IV Alteplase to match Class III stratifications and reworded for clarity. Class and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
13. In patients undergoing fibrinolytic therapy, physicians should be prepared to treat potential emergent adverse effects, including bleeding complications and angioedema that may cause partial airway obstruction.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
See Table 8 for options for management of symptomatic intracranial bleeding after administration of IV alteplase for treatment of AIS and Table 9 for option angioedema associated with IV alteplase administration for AIS.			
14. BP should be maintained <180/105 mm Hg for at least the first 24 hours after IV alteplase treatment.	I	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
15. The risk of antithrombotic therapy within the first 24 hours after treatment with IV alteplase (with or without EVT) is uncertain. Use might be considered in the presence of concomitant conditions for which such treatment given in the absence of IV alteplase is known to provide substantial benefit or withholding such treatment is known to cause substantial risk.	llb	B-NR	New recommendation.
A retrospective analysis of consecutive ischemic stroke patients admitted to a single center in Seoul, South Korea, found no increased risk of hemorrhage with early initiation of antiplatelet or anticoagulant therapy (<24 hours) after IV alteplase or EVT compared with initiation >24 hours. However, this study may have been subject to selection bias, and the timing of the initiation of antiplatelet therapy or anticoagulation should be based on an individual level, balancing risk versus benefit. ¹⁶⁶			See Table XXXVIII in online Data Supplement 1.
16. In patients eligible for IV alteplase, benefit of therapy is time dependent, and treatment should be initiated as quickly as possible.	I	A	Recommendation reworded for clarity from 2013 AIS Guidelines. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.

Table 6. Eligibility Recommendations for IV Alteplase in Patients With AIS

Indications (Class I)	
Within 3 h*	IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 min with initial 10% of dose given as bolus over 1 min) is recommended for selected patients who may be treated within 3 h of ischemic stroke symptom onset or patient last known well or at baseline state. Physicians should review the criteria outlined in this table to determine patient eligibility.† (<i>Class I; LOE A</i>)
Age	For otherwise medically eligible patients \geq 18 y of age, IV alteplase administration within 3 h is equally recommended for patients <80 and >80 y of age.† (<i>Class I; LOE A</i>)
Severity	For severe stroke symptoms, IV alteplase is indicated within 3 h from symptom onset of ischemic stroke. Despite increased risk of hemorrhagic transformation, there is still proven clinical benefit for patients with severe stroke symptoms.† (<i>Class I; LOE A</i>)
	For patients with mild but disabling stroke symptoms, IV alteplase is indicated within 3 h from symptom onset of ischemic stroke. There should be no exclusion for patients with mild but nonetheless disabling stroke symptoms, in the opinion of the treating physician, from treatment with IV alteplase because there is proven clinical benefit for those patients.† (<i>Class I; LOE B-R</i>)‡
3–4.5 h*	IV alteplase (0.9 mg/kg, maximum dose 90 mg over 60 min with initial 10% of dose given as bolus over 1 min) is also recommended for selected patients who can be treated within 3 and 4.5 h of ischemic stroke symptom onset or patient last known well. Physicians should review the criteria outlined in this table to determine patient eligibility.† (<i>Class I; LOE B-R</i>)‡
Age Diabetes mellitus Prior stroke Severity OACs Imaging	IV alteplase treatment in the 3- to 4.5-h time window is recommended for those patients \leq 80 y of age, without a history of both diabetes mellitus and prior stroke, NIHSS score \leq 25, not taking any OACs, and without imaging evidence of ischemic injury involving more than one third of the MCA territory.† (<i>Class I; LOE B-R</i>)‡
Urgency	Treatment should be initiated as quickly as possible within the above listed time frames because time to treatment is strongly associated with outcomes.† (<i>Class I; LOE A</i>)
BP	IV alteplase is recommended in patients whose BP can be lowered safely (to <185/110 mm Hg) with antihypertensive agents, with the physician assessing the stability of the BP before starting IV alteplase.† (<i>Class I; LOE B-NR</i>)‡
Blood glucose	IV alteplase is recommended in otherwise eligible patients with initial glucose levels >50 mg/dL.† (Class I; LOE A)
CT	IV alteplase administration is recommended in the setting of early ischemic changes on NCCT of mid to moderate extent (other the frank hypodensity).† (Class I; LOE A)
Prior antiplatelet therapy	IV alteplase is recommended for patients taking antiplatelet drug monotherapy before stroke on the basis of evidence that the benefit of alteplase outweighs a possible small increased risk of sICH.† (<i>Class I; LOE A</i>)
	IV alteplase is recommended for patients taking antiplatelet drug combination therapy (eg, aspirin and clopidogrel) before stroke of the basis of evidence that the benefit of alteplase outweighs a probable increased risk of sICH.† (<i>Class I; LOE B-NR</i>)‡
End-stage renal disease	In patients with end-stage renal disease on hemodialysis and normal aPTT, IV alteplase is recommended.† (<i>Class I; LOE C-LD</i>)‡ However, those with elevated aPTT may have elevated risk for hemorrhagic complications.
Contraindications (Class III)	
Time of onset	IV alteplase is not recommended in ischemic stroke patients who have an unclear time and/ or unwitnessed symptom onset and in whom the time last known to be at baseline state is >3 or 4.5 h.† (<i>Class III: No Benefit; LOE B-NR</i>)‡§
	IV alteplase is not recommended in ischemic stroke patients who awoke with stroke with time last known to be at baseline state > or 4.5 h.† (<i>Class III: No Benefit; LOE B-NR</i>)‡§
CT	IV alteplase should not be administered to a patient whose CT reveals an acute intracranial hemorrhage.† (<i>Class III: Harm; LOE C-EO</i>)‡§
	There remains insufficient evidence to identify a threshold of hypoattenuation severity or extent that affects treatment response to alteplase. However, administering IV alteplase to patients whose CT brain imaging exhibits extensive regions of clear hypoattenuation is not recommended. These patients have a poor prognosis despite IV alteplase, and severe hypoattenuation defined as obvious hypodensity represents irreversible injury.† (<i>Class III: No Benefit; LOE</i> A)§
lschemic stroke within 3 mo	Use of IV alteplase in patients presenting with AIS who have had a prior ischemic stroke within 3 mo may be harmful.† (<i>Class III: Harm; LOE B-NR</i>)‡§
Severe head trauma within 3 mo	In AIS patients with recent severe head trauma (within 3 mo), IV alteplase is contraindicated.† (<i>Class III: Harm; LOE C-EO</i>)‡§
	Given the possibility of bleeding complications from the underlying severe head trauma, IV alteplase should not be administered in posttraumatic infarction that occurs during the acute in-hospital phase.† (<i>Class III: Harm; LOE C-EO</i>)‡§ (Recommendation wording modified to match Class III stratifications.)
Intracranial/intraspinal surgery within 3 mo	For patients with AIS and a history of intracranial/spinal surgery within the prior 3 mo, IV alteplase is potentially harmful.† (<i>Class II</i> Harm; LOE C-EO) [§]

Table 6. Continued

History of intracranial hemorrhage	IV alteplase administration in patients who have a history of intracranial hemorrhage is potentially harmful.† (<i>Class III: Harm; LOE C-EO</i>)‡§
Subarachnoid hemorrhage	IV alteplase is contraindicated in patients presenting with symptoms and signs most consistent with an SAH.† (<i>Class III: Harm LOE C-EO</i>)‡§
Gl malignancy or Gl bleed within 21 d	Patients with a structural GI malignancy or recent bleeding event within 21 d of their stroke event should be considered high risk, and IV alteplase administration is potentially harmful.† (<i>Class III: Harm; LOE C-EO</i>)‡§
Coagulopathy	The safety and efficacy of IV alteplase for acute stroke patients with platelets <100 000/mm ³ , INR >1.7, aPTT >40 s, or PT >15 s are unknown, and IV alteplase should not be administered.† (<i>Class III: Harm; LOE C-EO</i>] $\$$
	(In patients without history of thrombocytopenia, treatment with IV alteplase can be initiated before availability of platelet count but should be discontinued if platelet count is <100 000/mm ³ . In patients without recent use of OACs or heparin, treatment with IV alteplase can be initiated before availability of coagulation test results but should be discontinued if INR is >1.7 or PT is abnormally elevated by local laboratory standards.) (Recommendation wording modified to match Class III stratifications.)
LMWH	IV alteplase should not be administered to patients who have received a treatment dose of LMWH within the previous 24 h.† (<i>Class III: Harm; LOE B-NR</i>)II (Recommendation wording modified to match Class III stratifications.)
Thrombin inhibitors or factor Xa inhibitors	The use of IV alteplase in patients taking direct thrombin inhibitors or direct factor Xa inhibitors has not been firmly established but may be harmful.† (<i>Class III: Harm; LOE C-EO</i>)‡\$ IV alteplase should not be administered to patients taking direct thrombin inhibitors or direct factor Xa inhibitors unless laboratory tests such as aPTT, INR, platelet count, ecarin clotting time, thrombin time, or appropriate direct factor Xa activity assays are normal or the patient has not received a dose of these agents for >48 h (assuming normal renal metabolizing function)
	(Alteplase could be considered when appropriate laboratory tests such as aPTT, INR, ecarin clotting time, thrombin time, or direct factor Xa activity assays are normal or when the patient has not taken a dose of these ACs for >48 h and renal function is normal.)
	(Recommendation wording modified to match Class III stratifications.)
Glycoprotein IIb/IIIa receptor inhibitors	Antiplatelet agents that inhibit the glycoprotein IIb/Illa receptor should not be administered concurrently with IV alteplase outside a clinical trial.† (<i>Class III: Harm; LOE B-R</i>)‡§ (Recommendation wording modified to match Class III stratifications.)
	Heart Stroke
Infective endocarditis	For patients with AIS and symptoms consistent with infective endocarditis, treatment with IV alteplase should not be administered because of the increased risk of intracranial hemorrhage.† (<i>Class III: Harm; LOE C-LD</i>)‡§ (Recommendation wording modified to match Class III stratifications.)
Acutic cuch discontion	
Aortic arch dissection	IV alteplase in AIS known or suspected to be associated with aortic arch dissection is potentially harmful and should not be administered. † (<i>Class III: Harm; LOE C-EO</i>)‡§ (Recommendation wording modified to match Class III stratifications.)
linking and all taking any start	
Intra-axial intracranial neoplasm	IV alteplase treatment for patients with AIS who harbor an intra-axial intracranial neoplasm is potentially harmful.† (<i>Class III: Harm</i> , <i>LOE C-EO</i>)‡§
Additional recommendation	s for treatment with IV alteplase for patients with AIS (Class II)
Extended 3- to 4.5-h window	For patients >80 y of age presenting in the 3- to 4.5-h window, IV alteplase is safe and can be as effective as in younger patients. (<i>Class IIa; LOE B-NR</i>)‡
	For patients taking warfarin and with an INR \leq 1.7 who present in the 3- to 4.5-h window, IV alteplase appears safe and may be beneficial.† (<i>Class IIb; LOE B-NR</i>)‡
	In AIS patients with prior stroke and diabetes mellitus presenting in the 3- to 4.5- h window, IV alteplase may be as effective as treatment in the 0- to 3-h window and may be a reasonable option. $+$ (<i>Class IIb; LOE B-NR</i>) $+$
Severity 0- to 3-h window	Within 3 h from symptom onset, treatment of patients with mild ischemic stroke symptoms that are judged as nondisabling may be considered. Treatment risks should be weighed against possible benefits; however, more study is needed to further define the risk to-benefit ratio.† (<i>Class Ilb; LOE C-LD</i>)‡
Severity 3- to 4.5-h window	For otherwise eligible patients with mild stroke presenting in the 3- to 4.5-h window, IV alteplase may be as effective as treatment in the 0- to 3-h window and may be a reasonable option. Treatment risks should be weighed against possible benefits. (<i>Class IIb; LOE B-NR</i>)
	The benefit of IV alteplase between 3 and 4.5 h from symptom onset for patients with very severe stroke symptoms (NIHSS > 25) i uncertain.† (<i>Class Ilb; LOE C-LD</i>)
Preexisting disability	Preexisting disability does not seem to independently increase the risk of sICH after IV alteplase, but it may be associated with less neurological improvement and higher mortality. Thrombolytic therapy with IV alteplase for acute stroke patients with preexisting disability (mRS score ≥ 2) may be reasonable, but decisions should take into account relevant factors, including quality of life, social support, place of residence, need for a caregiver, patients' and families' preferences, and goals of care.
	1

Table 6. Continued

	Patients with preexisting dementia may benefit from IV alteplase. Individual considerations such as life expectancy and premorbid level of function are important to determine whether alteplase may offer a clinically meaningful benefit.† (<i>Class IIb; LOE B-NR</i>)‡
Early improvement	IV alteplase treatment is reasonable for patients who present with moderate to severe ischemic stroke and demonstrate early improvement but remain moderately impaired and potentially disabled in the judgment of the examiner.† (<i>Class Ila; LOE A</i>)
Seizure at onset	IV alteplase is reasonable in patients with a seizure at the time of onset of acute stroke if evidence suggests that residual impairments are secondary to stroke and not a postictal phenomenon.† (<i>Class IIa; LOE C-LD</i>)‡
Blood glucose	Treatment with IV alteplase in patients with AIS who present with initial glucose levels <50 or >400 mg/dL that are subsequently normalized and who are otherwise eligible may be reasonable. (Recommendation modified from 2015 IV Alteplase to conform to tex of 2015 IV Alteplase. [<i>Class IIb; LOE C-LD</i>])‡
Coagulopathy	The safety and efficacy of IV alteplase for acute stroke patients with a clinical history of potential bleeding diathesis or coagulopathy are unknown. IV alteplase may be considered on a case-by-case basis.† (<i>Class IIb; LOE C-EO</i>)‡
	IV alteplase may be reasonable in patients who have a history of warfarin use and an INR \leq 1.7 and/or a PT <15 s.† (<i>Class IIb; LOE B-NR</i>)‡
Dural puncture	IV alteplase may be considered for patients who present with AIS, even in instances when they may have undergone a lumbar dural puncture in the preceding 7 d.† (<i>Class IIb; LOE C-EO</i>)‡
Arterial puncture	The safety and efficacy of administering IV alteplase to acute stroke patients who have had an arterial puncture of a noncompressible blood vessel in the 7 d preceding stroke symptoms are uncertain.† (<i>Class IIb; LOE C-LD</i>)‡
Recent major trauma	In AIS patients with recent major trauma (within 14 d) not involving the head, IV alteplase may be carefully considered, with the risks of bleeding from injuries related to the trauma weighed against the severity and potential disability from the ischemic stroke. (Recommendation modified from 2015 IV Alteplase to specify that it does not apply to head trauma. [<i>Class IIb; LOE C-LD</i>])‡
Recent major surgery	Use of IV alteplase in carefully selected patients presenting with AIS who have undergone a major surgery in the preceding 14 d may be considered, but the potential increased risk of surgical-site hemorrhage should be weighed against the anticipated benefits of reduced stroke related neurological deficits.† (<i>Class Ilb; LOE C-LD</i>)‡
GI and genitourinary bleeding	Reported literature details a low bleeding risk with IV alteplase administration in the setting of past Gl/genitourinary bleeding. Administration of IV alteplase in this patient population may be reasonable.† (<i>Class IIb; LOE C-LD</i> ‡ Stroke (Note: Alteplase administration within 21 d of a Gl bleeding event is not recommended; see Contraindications.)
Menstruation	IV alteplase is probably indicated in women who are menstruating who present with AIS and do not have a history of menorrhagia. However, women should be warned that alteplase treatment could increase the degree of menstrual flow.† (<i>Class Ila; LOE C-EO</i>)
	Because the potential benefits of IV alteplase probably outweigh the risks of serious bleeding in patients with recent or active history of menorrhagia without clinically significant anemia or hypotension, IV alteplase administration may be considered.† (<i>Class Ilb; LOE C-LD</i>)‡
	When there is a history of recent or active vaginal bleeding causing clinically significant anemia, then emergency consultation with a gynecologist is probably indicated before a decision about IV alteplase is made.† (<i>Class Ila; LOE C-EO</i>)‡
Extracranial cervical dissections	IV alteplase in AIS known or suspected to be associated with extracranial cervical arterial dissection is reasonably safe within 4.5 h and probably recommended.† (<i>Class Ila; LOE C-LD</i>)‡
Intracranial arterial dissection	IV alteplase usefulness and hemorrhagic risk in AIS known or suspected to be associated with intracranial arterial dissection remain unknown, uncertain, and not well established.† (<i>Class Ilb; LOE C-LD</i>)‡
Unruptured intracranial aneurysm	For patients presenting with AIS who are known to harbor a small or moderate-sized (<10 mm) unruptured and unsecured intracranial aneurysm, administration of IV alteplase is reasonable and probably recommended.† (<i>Class Ila; LOE C-LD</i>)‡
	Usefulness and risk of IV alteplase in patients with AIS who harbor a giant unruptured and unsecured intracranial aneurysm are not well established.† (<i>Class IIb; LOE C-LD</i>)‡
Intracranial vascular malformations	For patients presenting with AIS who are known to harbor an unruptured and untreated intracranial vascular malformation the usefulness and risks of administration of IV alteplase are not well established.† (<i>Class IIb; LOE C-LD</i>)‡
	Because of the increased risk of ICH in this population of patients, IV alteplase may be considered in patients with stroke with severe neurological deficits and a high likelihood of morbidity and mortality to outweigh the anticipated risk of ICH secondary to thrombolysis.† (<i>Class IIb; LOE C-LD</i>)‡
CMBs	In otherwise eligible patients who have previously had a small number (1–10) of CMBs demonstrated on MRI, administration of IV alteplase is reasonable. (<i>Class IIa; Level B-NR</i>)
	In otherwise eligible patients who have previously had a high burden of CMBs (>10) demonstrated on MRI, treatment with IV alteplase may be associated with an increased risk of sICH, and the benefits of treatment are uncertain. Treatment may be

Table 6. Continued

Extra-axial intracranial neoplasms	IV alteplase treatment is probably recommended for patients with AIS who harbor an extra-axial intracranial neoplasm.† (<i>Class Ila; LOE C-EO</i>)‡
Acute MI	For patients presenting with concurrent AIS and acute MI, treatment with IV alteplase at the dose appropriate for cerebral ischemia followed by percutaneous coronary angioplasty and stenting if indicated, is reasonable.† (<i>Class Ila; LOE C-EO</i>)‡
Recent MI	For patients presenting with AIS and a history of recent MI in the past 3 mo, treating the ischemic stroke with IV alteplase is reasonable if the recent MI was non-STEMI.† (<i>Class IIa; LOE C-LD</i>)‡
	For patients presenting with AIS and a history of recent MI in the past 3 mo, treating the ischemic stroke with IV alteplase is reasonable if the recent MI was a STEMI involving the right or inferior myocardium.† (<i>Class IIa; LOE C-LD</i>)‡
	For patients presenting with AIS and a history of recent MI in the past 3 mo, treating the ischemic stroke with IV alteplase may reasonable if the recent MI was a STEMI involving the left anterior myocardium.† (<i>Class IIb; LOE C-LD</i>)‡
Other cardiac diseases	For patients with major AIS likely to produce severe disability and acute pericarditis, treatment with IV alteplase may be reasonable (<i>Class Ilb; LOE C-EO</i>)‡; urgent consultation with a cardiologist is recommended in this situation.
	For patients presenting with moderate AIS likely to produce mild disability and acute pericarditis, treatment with IV alteplase is of uncertain net benefit.† (<i>Class Ilb; LOE C-EO</i>)‡
	For patients with major AIS likely to produce severe disability and known left atrial or ventricular thrombus, treatment with IV alteplase may be reasonable.† (<i>Class IIb; LOE C-LD</i>)‡
	For patients presenting with moderate AIS likely to produce mild disability and known left atrial or ventricular thrombus, treatment with IV alteplase is of uncertain net benefit.† (<i>Class IIb; LOE C-LD</i>)‡
	For patients with major AIS likely to produce severe disability and cardiac myxoma, treatment with IV alteplase may be reasonable (<i>Class IIb; LOE C-LD</i>)‡
	For patients presenting with major AIS likely to produce severe disability and papillary fibroelastoma, treatment with IV alteplase may be reasonable.† (<i>Class IIb; LOE C-LD</i>)‡
Procedural stroke	IV alteplase is reasonable for the treatment of AIS complications of cardiac or cerebral angiographic procedures, depending on the usual eligibility criteria.† (<i>Class IIa; LOE A</i>)‡
Systemic malignancy	The safety and efficacy of alteplase in patients with current malignancy are not well established. † <i>(Class IIb; LOE C-LD</i>)‡ Patients with systemic malignancy and reasonable (>6 mo) life expectancy may benefit from IV alteplase if other contraindications such as coagulation abnormalities, recent surgery, or systemic bleeding do not coexist.
Pregnancy	IV alteplase administration may be considered in pregnancy when the anticipated benefits of treating moderate or severe stroke outweigh the anticipated increased risks of uterine bleeding.† (<i>Class IIb; LOE C-LD</i>)‡
	The safety and efficacy of IV alteplase in the early postpartum period (<14 d after delivery) have not been well established. (Class IIb; LOE C-LD) \ddagger
Ophthalmological conditions	Use of IV alteplase in patients presenting with AIS who have a history of diabetic hemorrhagic retinopathy or other hemorrhagic ophthalmic conditions is reasonable to recommend, but the potential increased risk of visual loss should be weighed against the anticipated benefits of reduced stroke-related neurological deficits.† (<i>Class IIa; LOE B-NR</i>)‡
Sickle cell disease	IV alteplase for adults presenting with an AIS with known sickle cell disease can be beneficial. (Class IIa; LOE B-NR)
Illicit drug use	Treating clinicians should be aware that illicit drug use may be a contributing factor to incident stroke. IV alteplase is reasonable in instances of illicit drug use–associated AIS in patients with no other exclusions.† (<i>Class IIa; LOE C-LD</i>)‡
Stroke mimics	The risk of symptomatic intracranial hemorrhage in the stroke mimic population is quite low; thus, starting IV alteplase is probably recommended in preference over delaying treatment to pursue additional diagnostic studies.† (<i>Class IIa; LOE B-NR</i>)

Clinicians should also be informed of the indications and contraindications from local regulatory agencies (for current information from the US Food and Drug Administration refer to http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/103172s5203lbl.pdf).

For a detailed discussion of this topic and evidence supporting these recommendations, refer to the American Heart Association (AHA) scientific statement on the rationale for inclusion and exclusion criteria for IV alteplase in AIS.¹⁵

AC indicates anticoagulants; ACC, American College of Cardiology; AlS, acute ischemic stroke; AHA, American Heart Association; aPTT, activated partial thromboplastin time; BP, blood pressure; CMB, cerebral microbleed; CT, computed tomography; GI, gastrointestinal; ICH, intracerebral hemorrhage; INR, international normalized ratio; IV, intravenous; LMWH, low-molecular-weight heparin; LOE, level of evidence; MCA, middle cerebral artery; MI, myocardial infarction; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NCCT, noncontrast computed tomography; NIHSS, National Institutes of Health Stroke Scale; OAC, oral anticoagulant; PT, prothromboplastin time; sICH, symptomatic intracerebral hemorrhage; and STEMI, ST-segment–elevation myocardial infarction.

*When uncertain, the time of onset time should be considered the time when the patient was last known to be normal or at baseline neurological condition.

†Recommendation unchanged or reworded for clarity from 2015 IV Alteplase. See Table LXXXIII in online Data Supplement 1 for original wording.

‡LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

§COR amended to conform with ACC/AHA 2015 Recommendation Classification System.

ISee also the text of these guidelines for additional information on these recommendations.

Table 7. Treatment of AIS: IV Administration of Alteplase

Infuse 0.9 mg/kg (maximum dose 90 mg) over 60 min, with 10% of the dose given as a bolus over 1 min.

Admit the patient to an intensive care or stroke unit for monitoring.

If the patient develops severe headache, acute hypertension, nausea, or vomiting or has a worsening neurological examination, discontinue the infusion (if IV alteplase is being administered) and obtain emergency head CT scan.

Measure BP and perform neurological assessments every 15 min during and after IV alteplase infusion for 2 h, then every 30 min for 6 h, then hourly until 24 h after IV alteplase treatment.

Increase the frequency of BP measurements if SBP is >180 mm Hg or if DBP is >105 mm Hg; administer antihypertensive medications to maintain BP at or below these levels (Table 5).

Delay placement of nasogastric tubes, indwelling bladder catheters, or intra-arterial pressure catheters if the patient can be safely managed without them.

Obtain a follow-up CT or MRI scan at 24 h after IV alteplase before starting anticoagulants or antiplatelet agents.

AIS indicates acute ischemic stroke; BP, blood pressure; CT, computed tomography; DBP, diastolic blood pressure; IV, intravenous; MRI, magnetic resonance imaging; and SBP, systolic blood pressure.

Reprinted from Jauch et al.¹ Copyright © 2013, American Heart Association, Inc.

Table 8. Management of Symptomatic Intracranial Bleeding **Occurring Within 24 Hours After Administration of IV Alteplase** for Treatment of AIS

	Class IIb, LOE C-EO			
	Stop alteplase infusion	'	1-1	4
	CBC, PT (INR), aPTT, fibrinogen level, and type	e and cross-n	natch	
	Emergent nonenhanced head CT			
	Cryoprecipitate (includes factor VIII): 10 U infu 1 h, peaks in 12 h); administer additional dose mg/dL		· ·	
	Tranexamic acid 1000 mg IV infused over 10 4–5 g over 1 h, followed by 1 g IV until bleedi in 3 h)			
- 1				

Supportive therapy, including BP management, ICP, CPP, MAP, temperature, and glucose control

AIS indicates acute ischemic stroke; aPTT, activated partial thromboplastin time; BP, blood pressure; CBC, complete blood count; CPP, cerebral perfusion pressure; CT, computed tomography; ICP, intracranial pressure; INR, international normalized ratio; IV, intravenous; LOE, Level of Evidence; MAP, mean arterial pressure; and PT, prothrombin time.

Sources: Sloan et al,¹⁴⁹ Mahaffey et al,¹⁵⁰ Goldstein et al,¹⁵¹ French et al,¹⁵² Yaghi et al,153-155 Stone et al,156 and Frontera et al.157

Table 9. Management of Orolingual Angioedema Associated With IV Alteplase Administration for AIS

Class Ilb. L	0E C-	EO
--------------	-------	----

Maintain airway

Endotracheal intubation may not be necessary if edema is limited to	
anterior tongue and lips.	

Edema involving larynx, palate, floor of mouth, or oropharynx with rapid progression (within 30 min) poses higher risk of requiring intubation.

Awake fiberoptic intubation is optimal. Nasal-tracheal intubation may be required but poses risk of epistaxis post-IV alteplase. Cricothyroidotomy is rarely needed and also problematic after IV alteplase.

Discontinue IV alteplase infusion and hold ACEIs

Administer IV methylprednisolone 125 ma

Administer IV diphenhydramine 50 mg

Administer ranitidine 50 mg IV or famotidine 20 mg IV

If there is further increase in angioedema, administer epinephrine (0.1%) 0.3 mL subcutaneously or by nebulizer 0.5 mL

Icatibant, a selective bradykinin B, receptor antagonist, 3 mL (30 mg) subcutaneously in abdominal area; additional injection of 30 mg may be administered at intervals of 6 h not to exceed total of 3 injections in 24 h; and plasma-derived C1 esterase inhibitor (20 IU/kg) has been successfully used in hereditary angioedema and ACEI-related angioedema

Supportive care

ACEI indicates angiotensin-converting enzyme inhibitor; AIS, acute ischemic stroke; IV, intravenous; and LOE, Level of Evidence.

Sources: Foster-Goldman and McCarthy, 158 Gorski and Schmidt, 159 Lewis, 160 Lin et al,¹⁶¹ Correia et al,¹⁶² O'Carroll and Aguilar,¹⁶³ Myslimi et al,¹⁶⁴ and Pahs et al.165

3.6. Other IV Thrombolytics and Sonothrombolysis

3.6. Other IV Thrombolytics and Sonothrombolysis	COR	LOE	New, Revised, or Unchanged
1. The benefit of IV defibrinogenating agents and of IV fibrinolytic agents other than alteplase and tenecteplase is unproven; therefore, their administration is not recommended outside a clinical trial.	III: No Benefit	B-R	Recommendation revised from 2013 AIS Guidelines.
Randomized placebo-controlled trials have not shown benefit from the admin 6 hours or desmoteplase within 3 to 9 hours after stroke onset in patients with intracranial artery occlusion or severe stenosis. ^{92,95,167,168}			See Table XXXIX in online Data Supplement 1.
2. Tenecteplase administered as a 0.4-mg/kg single IV bolus has not been proven to be superior or noninferior to alteplase but might be considered as an alternative to alteplase in patients with minor neurological impairment and no major intracranial occlusion.	lib	B-R	New recommendation.
IV tenecteplase has been compared to IV alteplase up to 6 hours after strok III superiority trials; tenecteplase appears to be similarly safe, but it is uncle or more effective than alteplase. ^{89,91,169,170} In the largest trial of 1100 subjec mg/kg failed to demonstrate superiority and had a safety and efficacy profil stroke population composed predominantly of patients with minor neurolog score, 4) and no major intracranial occlusion. ¹⁷⁰ Tenecteplase is given as a 1-hour infusion of alteplase.	See Table XXXIX in online Data Supplement 1.		
3. The use of sonothrombolysis as adjuvant therapy with IV thrombolysis is not recommended.	III: No Benefit	B-R	New recommendation.
Since the publication of the 2013 AIS Guidelines, a further RCT of sonothrom thrombolysis has shown no clinical benefit. NOR-SASS (Norwegian Sonothrom randomized 183 patients who had received either alteplase or tenecteplase for either contrast-enhanced sonothrombolysis (93 patients) or sham (90 patient hours and functional outcome at 90 days were not statistically significantly di the rates of sICH. ¹⁷¹ At this time, there are no RCT data to support additional or as adjuvant therapy for IV thrombolysis.	See Table XL in online Data Supplement 1.		

3.7. Mechanical Thrombectomy

3.7. Mechanical Thrombectomy	COR	LOE	New, Revised, or Unchanged
1. Patients eligible for IV alteplase should receive IV alteplase even if EVTs are being considered.	I	A	Recommendation reworded for clarity from 2015 Endovascular. See Table LXXXIII in online Data Supplement 1 for original wording.
2. In patients under consideration for mechanical thrombectomy, observation after IV alteplase to assess for clinical response should not be performed.	III: Harm	B-R	Recommendation revised from 2015 Endovascular.
In pooled patient-level data from 5 trials (HERMES [Highly Effective Reperful Endovascular Stroke Trials], which included the 5 trials MR CLEAN, ESCAPE EXTEND-IA), the odds of better disability outcomes at 90 days (mRS scale of thrombectomy group declined with longer time from symptom onset to exp odds ratio (cOR) at 3 hours, 2.79 (95% Cl, 1.96–3.98), absolute risk differe scores, 39.2%; cOR at 6 hours, 1.98 (95% Cl, 1.30–3.00), ARD, 30.2%; an 0.86–2.88), ARD, 15.7%, retaining statistical significance through 7 hours who achieved substantial reperfusion with endovascular thrombectomy, ea associated with a less favorable degree of disability (cOR, 0.84; 95% Cl, 0. functional independence (OR, 0.81; 95% Cl, 0.71–0.92; ARD, –5.2%; 95% in mortality (OR, 1.12; 95% Cl, 0.93–1.34; ARD, 1.5%; 95% Cl, –0.9 to 4.2 address the question of whether patients should be observed after IV altept before pursuing mechanical thrombectomy. However, one can infer that be days were directly associated with time from symptom onset to arterial pur mechanical thrombectomy, including observing for a clinical response after Therefore, the recommendation is slightly modified from the 2015 Endovas	FT PRIME, and ne mechanical cture: common er disability 1.57 (95% Cl, ong 390 patients o reperfusion was .7%) and less but no change not directly clinical response utcomes at 90 for delay to	See Tables XXIII and XLI in online Data Supplement 1.	

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
3. Patients should receive mechanical thrombectomy with a stent retriever if they meet all the following criteria: (1) prestroke mRS score of 0 to 1; (2) causative occlusion of the internal carotid artery or MCA segment 1 (M1); (3) age \geq 18 years; (4) NIHSS score of \geq 6; (5) ASPECTS of \geq 6; and (6) treatment can be initiated (groin puncture) within 6 hours of symptom onset.	I	A	Recommendation revised from 2015 Endovascular.
Results from 6 recent randomized trials of mechanical thrombectomy using devices (MR CLEAN, SWIFT PRIME, EXTEND-IA, ESCAPE, REVASCAT, THRAC recommendations for a defined group of patients as described in the 2015 g level analysis from 5 of these studies reported by the HERMES collaboration subgroup of 188 patients not treated with IV alteplase (cOR, 2.43; 95% Cl, 1 with IV alteplase has been removed from the prior recommendation. The HE also showed that mechanical thrombectomy had a favorable effect over star old (cOR, 3.68; 95% Cl, 1.95–6.92). ¹⁷² In patient-level data pooled from trial only or the predominant device used, a prespecified meta-analysis (SEER Co of Solitaire Stent Thrombectomy–Individual Patient Data Meta-Analysis of R ESCAPE, EXTEND-IA, REVASCAT) showed that mechanical thrombectomy ha care in patients ≥80 years old (3.46; 95% Cl, 1.58–7.60). ¹⁷³ In a meta-analy ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT), there was favorable effect over standard care without heterogeneity of effect across patient age subgri ≥70 years: OR, 2.41; 95% Cl, 1.51–3.84; and OR, 2.26; 95% Cl, 1.20–4.26 number of patients in these trials who were ≥90 years of age is not clear. in an elderly patient, consideration of comorbidities and risks should factor i mechanical thrombectomy.	See Tables XXIII and XLI in online Data Supplement 1.		
4. Although the benefits are uncertain, the use of mechanical thrombectomy with stent retrievers may be reasonable for carefully selected patients with AIS in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the MCA segment 2 (M2) or MCA segment 3 (M3) portion of the MCAs.	lib	B-R	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE revised. See Table LXXXIII in online Data Supplement 1 for original wording.
(ws) portion of the wcks. In pooled patient-level data from 5 trials (HERMES, which included the 5 trials MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, and EXTEND-IA), the direction of treatment effect for mechanical thrombectomy over standard care was favorable in M2 occlusions, but the adjusted common OR was not significant (1.28; 95% Cl, 0.51–3.21). ¹⁷² In patient-level data pooled from trials in which the Solitaire was the only or the predominant device used, a prespecified meta-analysis (SEER Collaboration: SWIFT PRIME, ESCAPE, EXTEND-IA, REVASCAT) showed that the direction of treatment effect was favorable for mechanical thrombectomy over standard care in M2 occlusions, but the OR and 95% Cl were not significant. ¹⁷³ In an analysis of pooled data from SWIFT (Solitaire With the Intention for Thrombectomy), STAR (Solitaire Flow Restoration Thrombectomy for Acute Revascularization), DEFUSE 2, and IMS III, among patients with M2 occlusions, reperfusion was associated with excellent functional outcomes (mRS score 0–1; OR, 2.2; 95% Cl, 1.0–4.7). ¹⁷⁵ Therefore, the recommendation for mechanical thrombectomy for M2/M3 occlusions does not change substantively from the 2015 AHA/American Stroke Association focused update.			See Tables XXIII and XLI in online Data Supplement 1.
5. Although the benefits are uncertain, the use of mechanical thrombectomy with stent retrievers may be reasonable for carefully selected patients with AIS in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the anterior cerebral arteries, vertebral arteries, basilar artery, or posterior cerebral arteries.	lib	C-EO	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
6. Although its benefits are uncertain, the use of mechanical thrombectomy with stent retrievers may be reasonable for patients with AIS in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have prestroke mRS score >1, ASPECTS <6, or NIHSS score <6, and causative occlusion of the internal carotid artery (ICA) or proximal MCA (M1). Additional randomized trial data are needed.	lib	B-R	Recommendation unchanged from 2015 Endovascular.

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
7. In selected patients with AIS within 6 to 16 hours of last known normal who have LVO in the anterior circulation and meet other DAWN or DEFUSE 3 eligibility criteria, mechanical thrombectomy is recommended.	I	A	New recommendation.
8. In selected patients with AIS within 6 to 24 hours of last known normal who have LVO in the anterior circulation and meet other DAWN eligibility criteria, mechanical thrombectomy is reasonable.	lla	B-R	New recommendation.
The DAWN trial used clinical imaging mismatch (a combination of NIHSS score or DW-MRI) as eligibility criteria to select patients with large anterior circulat with mechanical thrombectomy between 6 and 24 hours from last known of an overall benefit in function outcome at 90 days in the treatment group (mF adjusted difference, 33%; 95% Cl, 21–44; posterior probability of superiority few strokes with witnessed onset (12%). The DEFUSE 3 trial used perfusion- core size as imaging criteria to select patients with large anterior circulation last seen well for mechanical thrombectomy. This trial showed a benefit in fit the treated group (mRS score $0-2$, 44.6% versus 16.7%; RR, 2.67; 95% Cl, was independently demonstrated for the subgroup of patients who met DAW subgroup who did not. DAWN and DEFUSE 3 are the only RCTs showing ben- >6 hours from onset. Therefore, only the eligibility criteria from these trials a selection. Although future RCTs may demonstrate that additional eligibility cri- patients who benefit from mechanical thrombectomy, at this time, the DAWN be strictly adhered to in clinical practice.	See Table XXIII in online Data Supplement 1.		
9. The technical goal of the thrombectomy procedure should be reperfusion to a modified Thrombolysis in Cerebral Infarction (mTICI) 2b/3 angiographic result to maximize the probability of a good functional clinical outcome.	I	A	Recommendation reworded for clarity from 2015 Endovascular. See Table LXXXIII in online Data Supplement 1 for original wording.
Mechanical thrombectomy aims to achieve reperfusion, not simply recanalizate exist, but the mTICI score is the current assessment tool of choice, with proveout outcomes. ^{176,177} All recent endovascular trials used the mTICI 2b/3 threshold for rates achieved. In HERMES, 402 of 570 patients (71%) were successfully reputrials with less efficient devices showed lower recanalization rates, 1 factor in benefit from the procedure (IMS III, 41%; MR RESCUE, 25%). The additional be than 2b deserves further investigation.	American Heart Stroke Association Association.		
10. As with IV alteplase, reduced time from symptom onset to reperfusion with endovascular therapies is highly associated with better clinical outcomes. To ensure benefit, reperfusion to TICI grade 2b/3 should be achieved as early as possible within the therapeutic window.	I	B-R	Recommendation revised from 2015 Endovascular.
In pooled patient-level data from 5 trials (HERMES, which included the 5 trial SWIFT PRIME, and EXTEND-IA), the odds of better disability outcomes at 90 with the mechanical thrombectomy group declined with longer time from sypuncture: cOR at 3 hours, 2.79 (95% Cl, 1.96–3.98), ARD for lower disability hours, 1.98 (95% Cl, 1.30–3.00), ARD, 30.2%; cOR at 8 hours, 1.57 (95% Cl retaining statistical significance through 7 hours 18 minutes. ³² Among 390 p reperfusion with endovascular thrombectomy, each 1-hour delay to reperfus favorable degree of disability (cOR, 0.84; 95% Cl, 0.76–0.93; ARD, –6.7%) a (OR, 0.81; 95% Cl, 0.71–0.92; ARD, –5.2%; 95% Cl, –8.3 to –2.1). ³² In the achieving an mRS score of 0 to 2 at 90 days in the mechanical thrombectorm since last known normal. ¹⁰⁸ Therefore, reduced time from symptom onset to therapies is highly associated with better clinical outcomes. A variety of reperfusine trials used the mTICl 2b/3 threshold for adequate reperfusin HERMES, 402 of 570 patients (71%) were successfully reperfused to TICl efficient devices showed lower recanalization rates, 1 factor in their inability procedure (IMS III, 41%; MR RESCUE, 25%).	See Tables XXIII and XLI in online Data Supplement 1.		
11. Use of stent retrievers is indicated in preference to the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) device.	I.	А	Recommendation unchanged from 2015 Endovascular.

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
12. The use of mechanical thrombectomy devices other than stent retrievers as first-line devices for mechanical thrombectomy may be reasonable in some circumstances, but stent retrievers remain the first choice.	llb	B-R	Recommendation revised from 2015 Endovascular.
The ASTER trial (Contact Aspiration vs Stent Retriever for Successful Revascu aspiration technique and the standard stent retriever technique as first-line E within 6 hours among patients with acute anterior circulation ischemic stroke patients with successful revascularization at the end of all interventions was aspiration group versus 83.1% (n=157) in the stent retriever group (OR, 1.20 difference, 2.4%; 95% Cl, -5.4 to 9.7%). The secondary clinical end point of achieved by 82 of 181 (45.3%) in the contact aspiration group versus 91 of 1 group (OR, 0.83; 95% Cl, 0.54–1.26; P =0.38). The primary end point in ASTE revascularization after all interventions), and the trial was not powered to det clinically important difference between groups. Given its superiority design to primary end point, this trial was not designed to establish noninferiority. ¹⁷⁸	See Table XXIII in online Data Supplement 1.		
13. The use of a proximal balloon guide catheter or a large-bore distal-access catheter, rather than a cervical guide catheter alone, in conjunction with stent retrievers may be beneficial. Future studies should examine which systems provide the highest recanalization rates with the lowest risk for nontarget embolization.	lla	C-LD	Recommendation and Class unchanged from 2015 Endovascular. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
14. Use of salvage technical adjuncts including intra-arterial thrombolysis may be reasonable to achieve mTICI 2b/3 angiographic results.	lib	C-LD	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Intra-arterial lytic therapy played a limited role in the recent endovascular trial not initial treatment. In MR CLEAN, the EVT method was at the discretion of op with alternative stent retrievers to Trevo and Solitaire or intra-arterial alteplase patients were treated with intra-arterial alteplase alone. Twenty-four of 233 (1 modality. Treatment method had no impact on outcomes in this trial. ¹⁷⁹ In THF to a maximum dose of 0.3 mg/kg and allowed to establish goal reperfusion, o was attempted. A mean dose of 8.8 mg was administered in 15 of 141 patient thrombectomy (11%). There was no effect on outcomes compared with mech	233 treated vailable, but no nt with a second ial lytic was used al thrombectomy nical	American American Heart Stroke Association Association.	
15. EVT of tandem occlusions (both extracranial and intracranial occlusions) at the time of thrombectomy may be reasonable.	llb	B-R	Recommendation revised from 2015 Endovascular.
Tandem occlusions were considered in recent endovascular trials that showe thrombectomy over medical management alone. In the HERMES meta-analys (RR, 1.81; 95% Cl, 0.96–3.4) and 1132 of 1254 nontandem occlusions (RR, 1 reported compared with medical management. ¹⁷² In THRACE, 24 of 196 tand 0.55–6.07) and 172 of 196 nontandem occlusions (RR, 1.34; 95% Cl, 0.87–2 alteplase alone. ¹⁰⁶ In HERMES, there is heterogeneity of treatment methods d carotid occlusion (no revascularization of the proximal lesion versus angiopla retrospective reports detail the technical success of EVT for tandem occlusion on comparative approaches. No conclusions about the optimum treatment ap occlusions are therefore possible.	ndem occlusions -2.09) were , 1.82; 95% Cl, compared with IV imal extracranial). Multiple de specifics	See Tables XXIII and XLI in online Data Supplement 1.	
16. It is reasonable to select an anesthetic technique during endovascular therapy for AIS on the basis of individualized assessment of patient risk factors, technical performance of the procedure, and other clinical characteristics. Further randomized trial data are needed.	Recommendation revised from 2015 Endovascular.		
Conscious sedation (CS) was widely used in the recent endovascular trials (9 PRIME) with no clear positive or negative impact on outcome. In MR CLEAN, (95% Cl, 31–86) decrease in treatment effect of general anesthesia (GA) com of 67 patients receiving GA and 43 of 69 patients receiving CS achieved TICI on outcome. ¹⁰⁶ Thirty-five of 67 patients with GA and 36 of 74 with CS had m Although several retrospective studies suggest that GA produces worsening of limited prospective randomized data. Two small (≤150 participants) single-cr CS. Both failed to show superiority of either treatment for the primary clinical are available, either method of procedural sedation is reasonable.	howed a 51% n THRACE, 51 th no impact 2 at 90 days. nes, there are ompared GA with	See Tables XLII and XLIII in online Data Supplement 1.	

3.7. Mechanical Thrombectomy (Continued)	COR	LOE	New, Revised, or Unchanged
17. In patients who undergo mechanical thrombectomy, it is reasonable to maintain the BP ${\leq}180/105$ mm Hg during and for 24 hours after the procedure.	lla	B-NR	New recommendation.
 In patients who undergo mechanical thrombectomy with successful reperfusion, it might be reasonable to maintain BP at a level <180/105 mm Hg. 	llb	B-NR	New recommendation.
There are very limited data to guide BP therapy during and after the procedum mechanical thrombectomy. RCT data on optimal BP management approaches. The vast majority of patients enrolled in under 6-hour RCTs received IV alterpl stipulated management according to local guidelines with BP \leq 80/105 during procedure for these participants. Two trial protocols provided additional recoins states that systolic BP \geq 150 mm Hg is probably useful in promoting and keep while the artery remains occluded and that controlling BP once reperfusion h for a normal BP for that individual is sensible. Labetalol or an IV β -blocker su recommended. ¹⁰⁴ The DAWN protocol recommends maintaining systolic BP $<$ subjects who are reperfused after mechanical thrombectomy (defined as ach territory reperfusion). ¹⁸³	e not available. rotocols after the ESCAPE protocol adequate and aiming n low doses is e first 24 hours in	See Table XXIII in online Data Supplement 1.	

3.8. Other EVTs

3.8. Other EVTs	COR	LOE	New, Revised, or Unchanged
1. Initial treatment with intra-arterial thrombolysis is beneficial for carefully selected patients with major ischemic strokes of <6 hours' duration caused by occlusions of the MCA.	I	B-R	Recommendation and Class unchanged from 2015 Endovascular. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System.
2. Regarding the previous recommendation about intra-arterial thrombolysis, these data are derived from clinical trials that no longer reflect current practice, including the use of fibrinolytic drugs that are not available. A clinically beneficial dose of intra-arterial alteplase is not established, and alteplase does not have US Food and Drug Administration approval for intra-arterial use. As a consequence, mechanical thrombectomy with stent retrievers is recommended over intra-arterial thrombolysis as first-line therapy.	I	C-EO	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
3. Intra-arterial thrombolysis initiated within 6 hours of stroke onset in carefully selected patients who have contraindications to the use of IV alteplase might be considered, but the consequences are unknown.	lib	C-EO	Recommendation reworded for clarity from 2015 Endovascular. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

3.9. Antiplatelet Treatment

3.9. Antiplatelet Treatment	COR	LOE	New, Revised, or Unchanged
1. Administration of aspirin is recommended in patients with AIS within 24 to 48 hours after onset. For those treated with IV alteplase, aspirin administration is generally delayed until 24 hours later but might be considered in the presence of concomitant conditions for which such treatment given in the absence of IV alteplase is known to provide substantial benefit or withholding such treatment is known to cause substantial risk.	I	A	Recommendation revised from 2013 AIS Guidelines.
The safety and benefit of aspirin in the treatment of patients with AIS were establ administering doses between 160 and 300 mg. ^{184,185} This has recently been conf of aspirin trials. ¹⁸⁶ In patients unsafe or unable to swallow, rectal or nasogastric a Limited data exist on the use of alternative antiplatelet agents in the treatment of contraindication to aspirin, administering alternative antiplatelet agents may be re of consecutive ischemic stroke patients admitted to a single center in Seoul, Sout hemorrhage with early initiation of antiplatelet or anticoagulant therapy (<24 hour with initiation >24 hours. However, this study may have been subject to selection of antiplatelet therapy or anticoagulation should be made on an individual level, b recommendation was modified from the previous guideline to remove the spe dose is 325 mg," because previous clinical trials supporting its use for AIS inco	See Table XXXVIII in online Data Supplement 1.		

3.9. Antiplatelet Treatment (Continued)	COR	LOE	New, Revised, or Unchanged
2. Aspirin is not recommended as a substitute for acute stroke treatment in patients who are otherwise eligible for IV alteplase or mechanical thrombectomy.	III: No Benefit	B-R	Recommendation revised from 2013 AIS Guidelines.
Recommendation was modified to eliminate wording about "acute intervention to specify that aspirin is a less effective substitute for the treatment of AIS in for IV alteplase or mechanical thrombectomy.			
3. The efficacy of IV tirofiban and eptifibatide is not well established. Further clinical trials are needed.	llb	B-R	Recommendation revised from 2013 AIS Guidelines.
Prospective, randomized, open-label phase II trials of tirofiban ¹⁸⁷ and eptifibat treatment in patients with AIS. Single-arm studies of eptifibatide as adjunctive ongoing RCTs to establish safety and efficacy. ^{189,190}			See Table XLIV in online Data Supplement 1.
4. The administration of other glycoprotein IIb/IIIa receptor antagonists, including abciximab, in the treatment of AIS is potentially harmful and should not be performed. Further research testing the safety and efficacy of these medications in patients with AIS is required.	III: Harm	B-R	Recommendation revised from 2013 AIS Guidelines.
A recent Cochrane review of IV glycoprotein IIb/IIIa receptor antagonists in th agents are associated with a significant risk of ICH without a measurable imp The majority of trial data apply to abciximab, which was studied in the AbEST Safety of Abciximab in Patients With Acute Ischemic Stroke). The phase III tri an unfavorable risk-benefit analysis. ¹⁹²	provement in death	or disability. ¹⁹¹ Effectiveness and	See Table XLV in online Data Supplement 1.
5. In patients presenting with minor stroke, treatment for 21 days with dual antiplatelet therapy (aspirin and clopidogrel) begun within 24 hours can be beneficial for early secondary stroke prevention for a period of up to 90 days from symptom onset.	lla	B-R	New recommendation.
The CHANCE trial (Clopidogrel in High-Risk Patients With Acute Nondisabling randomized, double-blind, placebo-controlled trial conducted in China to stud antiplatelet therapy begun within 24 hours, clopidogrel plus aspirin for 21 da 90 days, in patients with minor stroke (NIHSS score \leq 3) or high-risk TIA (ABC Features, Duration, Diabetes] score \geq 4). The primary outcome of recurrent st hemorrhagic) favored dual antiplatelet therapy over aspirin alone (hazard rati P <0.001). ¹⁹³ A subsequent report of 1-year outcomes found a durable treatm stroke prevention was only significantly beneficial in the first 90 days. ¹⁹⁴ The in non-Asian populations remains to be established, and a large phase III mu Canada, Europe, and Australia is ongoing. ¹⁹⁵	hort-term dual bidogrel alone to ssure, Clinical chemic or Cl, 0.57–0.81; HR for secondary this intervention	See Table XLV in online Data Supplement 1. American American Heart Stroke Association Association.	
6. Ticagrelor is not recommended (over aspirin) in the acute treatment of patients with minor stroke.	B-R	New recommendation.	
The recently completed SOCRATES trial (Acute Stroke or Transient Ischaem or Ticagrelor and Patient Outcomes) was a randomized, double-blind, place versus aspirin begun within 24 hours in patients with minor stroke (NIHSS s Blood Pressure, Clinical Features, Duration, Diabetes] score \geq 4). With a prin composite end point of stroke, myocardial infarction (MI), or death up to 90 be superior to aspirin (HR, 0.89; 95% Cl, 0.78–1.01; <i>P</i> =0.07). ¹⁹⁶ However, b safety differences in the 2 groups, ticagrelor may be a reasonable alternativ contraindication to aspirin.	of ticagrelor BCD ² [Age, me to the as not found to a no significant	See Table XLV in online Data Supplement 1.	

3.10. Anticoagulants

3.10. Anticoagulants	COR	LOE	New, Revised, or Unchanged
1. Urgent anticoagulation, with the goal of preventing early recurrent stroke, halting neurological worsening, or improving outcomes after AIS, is not recommended for treatment of patients with AIS.	III: No Benefit	A	Recommendation and LOE unchanged from 2013 AIS Guidelines. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
Further support for this unchanged recommendation from the 2013 AIS Guid meta-analyses that confirm the lack of benefit of urgent anticoagulation. ^{197,19} these meta-analyses, investigated the efficacy of LMWH compared with aspid eterioration in an unblinded RCT. Although there was a statistically significa deterioration at 10 days after admission (LMWH, 27 [3.95%] versus aspirin, 8 no difference in 6-month mRS score of 0 to 2 (LMWH, 64.2% versus aspirin,	dy, not included in arly neurological rly neurological 001), there was	See Table XLV in online Data Supplement 1.	

3.10. Anticoagulants (Continued)	COR	LOE	New, Revised, or Unchanged
2. The usefulness of urgent anticoagulation in patients with severe stenosis of an internal carotid artery ipsilateral to an ischemic stroke is not well established.	lib	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. The safety and usefulness of short-term anticoagulation for nonocclusive, extracranial intraluminal thrombus in the setting of AIS are not well established.	lib	C-LD	New recommendation.
The optimal medical management of patients with AIS and radiologic evidence thrombus (eg, cervical carotid, vertebrobasilar arteries) remains uncertain. See have suggested the safety of short-term IV heparin or LMWH in this setting, ²⁰ to establish safety and efficacy.	ational studies	See Table XLVII in online Data Supplement 1.	
4. At present, the usefulness of argatroban, dabigatran, or other thrombin inhibitors for the treatment of patients with AIS is not well established. Further clinical trials are needed.	llb	B-R	Recommendation revised from 2013 AIS Guidelines.
Several observational studies have demonstrated the safety and feasibility inhibitors, as either a single or an adjunct therapy to alteplase. The oral dirwas studied in 53 patients with TIA or minor stroke (NIHSS score \leq 3) with r 30 days. ²⁰¹ ARTSS (Argatroban With Recombinant Tissue Plasminogen Activa on open label, pilot safety study of argatroban infusion plus IV alteplase in 6 partially occlusive thrombus diagnosed by transcranial Doppler. ²⁰⁵ In the AF with AIS treated with alteplase (n=90) were randomized to receive placebo followed by infusion of either 1 (low dose) or 3 (high dose) μ g/kg per minut similar among the control, low-dose, and high-dose arms: 3 of 29 (10%), 4 respectively. ²⁰⁶	itor dabigatran sICH up to oke)-1 was omplete or udy, patients 0-μg/kg bolus), ttes of sICH were	See Table XLVII in online Data Supplement 1.	
5. The safety and usefulness of factor Xa inhibitors in the treatment of AIS are not well established. Further clinical trials are needed.	llb	C-LD	New recommendation.
Limited data exist on the use of factor Xa inhibitors (eg, rivaroxaban, apixabal of patients with ischemic stroke. ²⁰⁷ Several prospective observational studies (NCT02279940, NCT02042534, NCT02283294).		See Table LXXVII in online Data Supplement 1. Heart Stroke Association	

3.11. Volume Expansion/Hemodilution, Vasodilators, and Hemodynamic Augmentation

3.11. Volume Expansion/Hemodilution, Vasodilators, and Hemodynamic Augmentation	COR	LOE	New, Revised, or Unchanged
1. Hemodilution by volume expansion is not recommended for treatment of patients with AIS.	III: No Benefit	A	Recommendation and LOE unchanged from 2013 AIS Guidelines. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
A recent Cochrane review of 4174 participants from multiple RCTs confirmed the previous guideline recommendation that hemodilution therapy, including varying methods of volume expansion with or without venesection, demonstrates no significant benefit in patients with AIS. ²⁰⁸			See Table XLVIII in online Data Supplement 1.
2. The administration of high-dose albumin is not recommended for the treatment of patients with AIS.	III: No Benefit	A	Recommendation revised from 2013 AIS Guidelines.
The ALIAS (Albumin in Acute Ischemic Stroke) part II trial of high-dose albumin infusion versus placebo in patients with AIS was terminated early for futility. ²⁰⁹ Combined analysis of the ALIAS parts I and II trials demonstrated no difference between groups in 90-day disability. ²¹⁰			See Table XLVIII in online Data Supplement 1.
3. The administration of vasodilatory agents, such as pentoxifylline, is not recommended for treatment of patients with AIS.	III: No Benefit	A	Recommendation and LOE unchanged from 2013 AIS Guidelines. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. At present, use of devices to augment cerebral blood flow for the treatment of patients with AIS is not well established. These devices should be used only in the setting of clinical trials.	llb	B-R	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1
			for original wording.

3.12. Neuroprotective Agents

3.12. Neuroprotective Agents	COR	LOE	New, Revised, or Unchanged
1. At present, no pharmacological or non-pharmacological treatments with putative neuroprotective actions have demonstrated efficacy in improving outcomes after ischemic stroke, and therefore, other neuroprotective agents are not recommended.	III: No Benefit	A	Recommendation reworded for clarity from 2013 AIS Guidelines. LOE unchanged. COR amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Recent trials of both pharmacological and nonpharmacological neuroprotectin negative. The FAST-MAG trial (Field Administration of Stroke Therapy–Magne infusion was the first acute stroke neuroprotection drug trial to enroll particip but no differences were seen between the intervention group and placebo co review of neuroprotection trials in AIS further confirms the recommendation of interventions to date. ¹¹⁴	See Table XLVIII in online Data Supplement 1.		

3.13. Emergency CEA/Carotid Angioplasty and Stenting Without Intracranial Clot

3.13. Emergency CEA/Carotid Angioplasty and Stenting Without Intracranial Clot	COR	LOE	New, Revised, or Unchanged
1. The usefulness of emergent or urgent CEA when clinical indicators or brain imaging suggests a small infarct core with large territory at risk (eg, penumbra), compromised by inadequate flow from a critical carotid stenosis or occlusion, or in the case of acute neurological deficit after CEA, in which acute thrombosis of the surgical site is suspected, is not well established.	llb	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System.
 In patients with unstable neurological status (eg, stroke-in- evolution), the efficacy of emergency or urgent CEA is not well established. 	llb	B-NR	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with the ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
3.14. Other		70	

3.14. Other

3.14. Other	COR	LOE	New, Revised, or Unchanged
1. Transcranial near-infrared laser therapy is not recommended for the treatment of AIS.	III: No Benefit	B-R	Recommendation revised from 2013 AIS Guidelines.
Previous data suggested that transcranial near-infrared laser therapy for st intervention through data published in NEST (Neurothera Effectiveness and Such basic science and preclinical data culminated in the NEST-3 trial, whi trial investigated the use of transcranial laser therapy for the treatment of is and 24 hours of stroke onset in patients with moderate stroke (NIHSS score alteplase. ²¹⁴ This study was terminated because of futility after analysis of benefit of transcranial laser therapy over sham treatment. There is currentl laser therapy is beneficial in the treatment of ischemic stroke.	d NEST-2. ^{211–213} tive RCT. This wween 4.5 ot receive IV nts found no	See Table XLIX in online Data Supplement 1.	

4. In-Hospital Management of AIS: General Supportive Care

4.1. Stroke Units

4.1. Stroke Units	COR	LOE	New, Revised, or Unchanged
1. The use of comprehensive specialized stroke care (stroke units) that incorporates rehabilitation is recommended.	I	A	Recommendation unchanged from 2013 AIS Guidelines.
2. The use of standardized stroke care order sets is recommended to improve general management.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

4.2. Supplemental Oxygen

4.2. Supplemental Oxygen	COR	LOE	New, Revised, or Unchanged
 Airway support and ventilatory assistance are recommended for the treatment of patients with acute stroke who have decreased consciousness or who have bulbar dysfunction that causes compromise of the airway. 	I	C-EO	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. Supplemental oxygen should be provided to maintain oxygen saturation >94%.	I	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. Supplemental oxygen is not recommended in nonhypoxic patients hospitalized with AIS.	III: No Benefit	B-R	Recommendation reworded for clarity from 2013 AIS Guidelines. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
Additional support for this unchanged recommendation from the 2013 AIS Guidelines is provided by an RCT of 8003 participants randomized within 24 hours of admission. There was no benefit on functional outcome at 90 days of oxygen by nasal cannula at 2 L/min (baseline 0_2 saturation >93%) or 3 L/min (baseline 0_2 saturation \leq 93%) continuously for 72 hours or nocturnally for 3 nights. ¹¹³			See Table XXVI in online Data Supplement 1.

4.3. Blood Pressure

4.3. Blood Pressure	COR	LOE	New, Revised, or Unchanged
1. In patients with AIS, early treatment of hypertension is indicated when required by comorbid conditions (eg, concomitant acute coronary event, acute heart failure, aortic dissection, postthrombolysis sICH, or preeclampsia/eclampsia). Lowering BP initially by 15% is probably safe.	I	C-EO	New recommendation.
Patients with AIS can present with severe acute comorbidities that demand e serious complications. However, it is important to keep in mind that excessiv worsen cerebral ischemia. ²¹⁵ Ideal management in these situations should be initial BP reduction by 15% is a reasonable goal.			
2. In patients with BP <220/120 mm Hg who did not receive IV alteplase or EVT and do not have a comorbid condition requiring acute antihypertensive treatment, initiating or reinitiating treatment of hypertension within the first 48 to 72 hours after an AIS is not effective to prevent death or dependency.	III: No Benefit	A	Recommendation revised from 2013 AIS Guidelines.
Multiple RCTs and meta-analyses of these trials ²¹⁶⁻²³⁰ have consistently shown that initiating or reinitiating antihypertensive therapy within the first 48 to 72 hours after an AIS is safe but this strategy is not associated with improved mortality or functional outcomes. However, none of these trials were designed to study BP reduction within the first 6 hours after stroke, and all excluded patients with extreme hypertension or coexistent indications for acute BP reduction.			See Table L in online Data Supplement 1.
3. In patients with BP ≥220/120 mm Hg who did not receive IV alteplase or EVT and have no comorbid conditions requiring acute antihypertensive treatment, the benefit of initiating or reinitiating treatment of hypertension within the first 48 to 72 hours is uncertain. It might be reasonable to lower BP by 15% during the first 24 hours after onset of stroke.	lib	C-EO	New recommendation.
Patients with severe hypertension (most commonly >220/120 mm Hg) were excluded from clinical trials evaluating BP lowering after AIS. ^{218,219,222,223,225,228} BP reduction has been traditionally advised for these cases, but the benefit of such treatment in the absence of comorbid conditions that may be acutely exacerbated by severe hypertension has not been formally studied.			See Table L in online Data Supplement 1.
4. Although no solid data are available to guide selection of medications for BP lowering after AIS, the antihypertensive medications and doses included in Table 5 are reasonable options.	lla	C-EO	Recommendation/table revised from 2013 AIS Guidelines.
There are no data to show that 1 strategy to lower BP is better than another a doses in Table 5 are all reasonable options.	after AIS. The medi	cations and	

4.3. Blood Pressure (Continued)	COR	LOE	New, Revised, or Unchanged
5. Starting or restarting antihypertensive therapy during hospitalization in patients with BP >140/90 mm Hg who are neurologically stable is safe and is reasonable to improve long-term BP control unless contraindicated.	lla	B-R	New recommendation.
Starting or restarting antihypertensive medications has been shown to be ass the BP after discharge in 2 trials. ^{223,225} Therefore, it is reasonable to start or m in the hospital when the patient remains hypertensive and is neurologically s question included only patients with previous diagnosis of hypertension. ²²⁵ However, because hypertension is not uncommonly hospitalization for stroke, it is reasonable to apply this recommendation also hypertension.	See Table L in online Data Supplement 1.		
Hypotension and hypovolemia should be corrected to maintain systemic perfusion levels necessary to support organ function.	New recommendation.		
The BP level that should be maintained in patients with AIS to ensure the best outcome is not known. Some observational studies show an association between worse outcomes and lower BPs, whereas others do not. ¹¹⁷⁻¹²⁴ No studies address the treatment of low BP in patients with stroke. In a systematic analysis of 12 studies comparing colloids with crystalloids, the odds of death or dependence were similar. Clinically important benefits or harms could not be excluded. There are no data to guide volume and duration of parenteral fluid delivery. ¹²⁵ No studies have compared different isotonic fluids.			See Table XXVIII in online Data Supplement 1.

4.4. Temperature

4.4. Temperature	COR	LOE	New, Revised, or Unchanged
1. Sources of hyperthermia (temperature >38°C) should be identified and treated. Antipyretic medications should be administered to lower temperature in hyperthermic patients with stroke.	I	C-EO	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
Additional support for this recommendation unchanged from the 2013 AIS Guidelines is provided by a large retrospective cohort study conducted from 2005 to 2013 of patients admitted to intensive care units in Australia, New Zealand, and the United Kingdom. Peak temperature in the first 24 hours <37°C and >39°C was associated with an increased risk of in-hospital death compared with normothermia in 9366 patients with AIS. ¹³⁴			See Tables XXX and XXXI in online Data
2. The benefit of induced hypothermia for treating patients with ischemic stroke is not well established. Hypothermia should be offered only in the context of ongoing clinical trials.	lib	B-R	Recommendation revised from 2013 AIS Guidelines.
Hypothermia is a promising neuroprotective strategy, but its benefit in patients with AIS has not been proven. Most studies suggest that induction of hypothermia is associated with an increase in the risk of infection, including pneumonia. ^{135–138} Therapeutic hypothermia should be undertaken only in the context of a clinical trial.			See Tables XXXII and XXXIII in online Data Supplement 1.

4.5. Glucose

4.5. Glucose	COR	LOE	New, Revised, or Unchanged
1. Evidence indicates that persistent in-hospital hyperglycemia during the first 24 hours after AIS is associated with worse outcomes than normoglycemia, and thus, it is reasonable to treat hyperglycemia to achieve blood glucose levels in a range of 140 to 180 mg/dL and to closely monitor to prevent hypoglycemia.	lla	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
 Hypoglycemia (blood glucose <60 mg/dL) should be treated in patients with AIS. 	I	C-LD	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

4.6. Dysphagia Screening

IIa tor for aspiration p e review committe ith no screening o e insufficient data t of death or depend Joundi et al ²³⁴ dete tiple comorbidities often presented wi oke severity. Patie 1.9%), to have moi stitution (14.0% verse se outcomes.	e completed r usual care, to determine ency. However, ermined that that (including prior ith weakness ents who failed re severe	New recommendation. See Tables LI and LII in online Data Supplement 1.
e review committe ith no screening of insufficient data t of death or depend Joundi et al ²³⁴ dete tiple comorbidities often presented wi oke severity. Patie 1.9%), to have mon stitution (14.0% ve	e completed r usual care, to determine ency. However, ermined that that (including prior ith weakness ents who failed re severe	
lla	C-LD	Recommendation reworded for clarity from 2016 Rehab Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2019 Recommendation Classification System.
		See Table LXXXIII in online Data Supplement for original wording.
lla	B-NR	Recommendation wording modified from 2016 Rehab Guidelines to match Class Ila stratifications. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
llb	C-LD	American American Recommendation reworded for clarity from 2016 Rehab Guidelines: Class unchanged. LOE amended to conform with ACC/AHA 201 Recommendation Classification System. See Table LXXXIII in online Data Supplement for original wording.
	lla	IIa B-NR

4.7. Nutrition

4.7. Nutrition	COR	LOE	New, Revised, or Unchanged
1. Enteral diet should be started within 7 days of admission after an acute stroke.	I	B-R	New recommendation.
2. For patients with dysphagia, it is reasonable to initially use nasogastric tubes for feeding in the early phase of stroke (starting within the first 7 days) and to place percutaneous gastrostomy tubes in patients with longer anticipated persistent inability to swallow safely (>2-3 weeks).	lla	C-EO	New recommendation.
The FOOD RCTs (Feed Or Ordinary Diet; phases I–III), completed in 131 hosp that supplemented diet was associated with an absolute reduction in risk of tube feeding (within 7 days of admission) was associated with an absolute reduction in death or poor outcomes of 1.2%. When nasogastric feeding gastrostomy feeding were compared, percutaneous endoscopic gastrostomy an increase in absolute risk of death of 1.0% and an increased risk of death conclusion was that stroke patients should be started on enteral diet within t 2012, a Cochrane review analyzed 33 RCTs involving 6779 patients to asses treatment, feeding strategies and timing (early [within 7 days] versus later), the effects of nutritional supplementation on acute and subacute stroke patie that, although data remained insufficient to offer definitive answers, available percutaneous endoscopic gastrostomy feeding and nasogastric tube feeding fatality, death, or dependency, but percutaneous endoscopic gastrostomy is failures (P =0.007), less gastrointestinal bleeding (P =0.007), and higher food	See Table LIII in online Data Supplement 1.		

4.7. Nutrition (Continued)	COR	LOE	New, Revised, or Unchanged
3. Nutritional supplements are reasonable to consider for patients who are malnourished or at risk of malnourishment.	lla	B-R	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. Implementing oral hygiene protocols to reduce the risk of pneumonia after stroke may be reasonable.	llb	B-NR	New recommendation.
Limited studies suggest that intensive oral hygiene protocols might reduce patients with acute stroke, Sørensen et al ²³⁷ showed that intervention with a and diet and standardized oral hygiene with antibacterial mouth rinse with (7% versus 28%) compared with a historical control group in which patients for dysphagia within 24 hours and received unsystematic and arbitrary oral In this experimental design, the efficacy of the standardized oral hygiene po could not be separated from the standardized dysphagia screening and diet historic nature of the control group, it is possible that other changes in care the historical control subjects and the intervention group might have affected pneumonia. A Cochrane review that included 3 studies found that oral care oral care and placebo gel reduced the incidence of pneumonia in the intervential ²³⁹ conducted a cohort study comparing rates of pneumonia in hospitalize implementation of systematic oral hygiene care. The unadjusted incidence was lower in the group assigned to oral hygiene care compared with contro <i>P</i> =0.022), with an unadjusted OR of 0.68 (95% Cl, 0.48–0.95; <i>P</i> =0.022). At the OR of hospital-acquired pneumonia in the intervention group remained solution of systematic oral hygiene care compared with contro <i>P</i> =0.028; <i>P</i> =0.041).	standardized dysph chlorhexidine reducts were unsystemat hygiene without cl ortion in the interver . Furthermore, bec that could have or ed the risk for deve and decontaminati ention group (P =0. d stroke patients b of hospital-acquire I subjects (14% ve ter adjustment for	agia screening ced pneumonia ically screened hlorhexidine. aution group cause of the courred between lopment of ion gel versus 03). ²³⁸ Wagner et efore and after d pneumonia rsus 10.33%; confounders,	See Tables LIV and LV in online Data Supplement 1.

4.8. Deep Vein Thrombosis Prophylaxis

4.8. Deep Vein Thrombosis Prophylaxis	COR	LOE	New, Revised, or Unchanged
1. In immobile stroke patients without contraindications, intermittent pneumatic compression (IPC) in addition to routine care (aspirin and hydration) is recommended over routine care to reduce the risk of deep vein thrombosis (DVT).	I	B-R	Recommendation revised from 2016 Rehab Guidelines Association
CLOTS (Clots in Legs or stockings After Stroke) 3 was a multicenter trial enror in the United Kingdom and comparing the use of IPC with routine care to not stroke patients for venous thromboembolism prophylaxis. Eligible patients we acute stroke and could not mobilize to the toilet without the help of another p as the use of aspirin for nonhemorrhagic stroke, hydration, and possible com of the patients received prophylactic or full-dose heparin or LMWH, but these between both groups. After the exclusion of 323 patients who died before an had no screening, the primary outcome of DVT occurred in 122 of 1267 IPC p 174 of 1245 no-IPC participants (14.0%), giving an adjusted OR of 0.65 (95% patients treated with IPC, there was a statistically significant improvement in 95% Cl, 0.73–0.99; P =0.042) but no improvement in disability. Skin breaks w (3.1% versus 1.4%; P =0.002). Contraindications to IPC include leg condition severe edema, venous stasis, severe peripheral vascular disease, postoperat as existing swelling or other signs of an existing DVT. ⁴⁰³ A meta-analysis inclu- confirmed these results. ²⁴⁰	PC with routine car ere enrolled within person. Routine car pression stockings patients were every primary outcome participants (9.6%) 6 Cl, 0.51–0.84; <i>P</i> = survival to 6 mont were more commo s such as dermatit ive vein ligation, or	e in immobile 3 days of the e was defined 5. A total of 31% nly distributed and 41 who compared with =0.001). Among hs (HR, 0.86; n in the IPC group is, gangrene, r grafting, as well	See Table LVI in online Data Supplement 1.
 The benefit of prophylactic-dose subcutaneous heparin (unfractionated heparin [UFH] or LMWH) in immobile patients with AIS is not well established. 	lib	A	New recommendation.
The most recent and comprehensive meta-analysis of pharmacological interventions for venous thromboembolism prophylaxis in AIS included 1 very large trial (n=14 578) and 4 small trials of UFH, 8 small trials of LMWHs or heparinoids, and 1 trial of a heparinoid. ²⁴⁰ Prophylactic anticoagulants were not associated with any significant effect on mortality or functional status at final follow-up. There were statistically significant reductions in symptomatic pulmonary embolisms (OR, 0.69; 95% Cl, 0.49–0.98) and in DVTs, most of which were asymptomatic (OR, 0.21; 95% Cl, 0.15–0.29). There were statistically significant increases in symptomatic intracranial hemorrhage (OR, 1.68; 95% Cl, 1.11–2.55) and symptomatic extracranial hemorrhages (OR, 1.65; 95% Cl, 1.0–2.75). There may be a subgroup of patients in whom the benefits of reducing the risk of venous thromboembolism are high enough to offset the increased risks of intracranial and extracranial bleeding; however, no prediction tool to identify such a subgroup has been derived. ^{197,198,240}			See Table LVI in online Data Supplement 1.

4.8. Deep Vein Thrombosis Prophylaxis (Continued)	COR	LOE	New, Revised, or Unchanged
3. When prophylactic anticoagulation is used, the benefit of prophylactic-dose LMWH over prophylactic-dose UFH is uncertain.	llb	B-R	New recommendation.
The most recent and comprehensive meta-analysis comparing LMWH or heparinoid with UFH for venous thromboembolism prophylaxis in AIS included 1 large trial (n=1762) and 2 smaller trials comparing LMWH with UFH and 4 small trials comparing heparinoids with UFH. There were no significant effects on death or disability for LMWH/heparinoids compared with UFH. ²⁴⁰ The use of LMWH/heparinoid was associated with a statistically significant reduction in DVTs (OR, 0.55; 95% Cl, 0.44–0.70), which were mostly asymptomatic, at the expense of a greater risk of major extracranial hemorrhages (OR, 3.79; 95% Cl, 1.30–11.03). LMWH can be administered once a day and thus is more convenient for nurses and comfortable for patients. Higher cost and increased bleeding risk in elderly patients with renal impairment are disadvantages of LMWH that should be kept in mind.			See Table LVI in online Data Supplement 1.
4. In ischemic stroke, elastic compression stockings should not be used.	III: Harm	B-R	Recommendation wording modified from 2016 Rehab Guidelines to match Class III stratifications. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.

4.9. Depression Screening

4.9. Depression Screening	COR	LOE	New, Revised, or Unchanged
1. Administration of a structured depression inventory is recommended to routinely screen for poststroke depression, but the optimal timing of screening is uncertain.	I	B-NR	Recommendation revised from 2016 Rehab Guidelines.
A meta-analysis of studies assessing poststroke depression screening tools inventories with high sensitivity for detecting poststroke depression. ²⁴¹ Howe determine the optimal screening method and timing to diagnose and treat poststroke depression.	ver, further researd	ch is needed to	See Table LVII in online Data Supplement 1.
2. Patients diagnosed with poststroke depression should be treated with antidepressants in the absence of contraindications and closely monitored to verify effectiveness.	I	B-R	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
l.10. Other		70	
4.10. Other	COR	LOE	New, Revised, or Unchanged
1. Routine use of prophylactic antibiotics has not been shown to be beneficial.	III: No Benefit	B-R	Recommendation unchanged from 2013 AIS Guidelines. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. Routine placement of indwelling bladder catheters should not be performed because of the associated risk of catheter-associated urinary tract infections.	III: Harm	C-LD	Recommendation wording modified from 2013 AIS Guidelines to match Class III stratifications. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. During hospitalization and inpatient rehabilitation, regular skin assessments are recommended with objective scales of risk such as the Braden scale.	I	C-LD	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. It is recommended to minimize or eliminate skin friction, to minimize skin pressure, to provide appropriate support surfaces, to avoid excessive moisture, and to maintain adequate nutrition and hydration to prevent skin breakdown. Regular turning, good skin hygiene, and use of specialized mattresses, wheelchair cushions, and seating are recommended until mobility returns.	I	C-LD	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
5. It is reasonable for patients and families with stroke to be directed to palliative care resources as appropriate. Caregivers should ascertain and include patient-centered preferences in decision making, especially during prognosis formation and considering interventions or limitations in care.	lla	C-EO	New recommendation.
The AHA scientific statement for palliative care in stroke ¹⁰ outlines, in detail, a nu for patients with AIS. The consensus is that patient- and family-centered care, of survivors and family members while preserving the dignity of patients, is the consultations, educational resources, and other aids should be identified in or	aimed at improving cornerstone of car) the well-being e. Appropriate	

4.11. Rehabilitation

4.11. Rehabilitation	COR	LOE	New, Revised, or Unchanged
 It is recommended that early rehabilitation for hospitalized stroke patients be provided in environments with organized, interprofessional stroke care. 	I	A	Recommendation unchanged from 2016 Rehab Guidelines.
2. It is recommended that stroke survivors receive rehabilitation at an intensity commensurate with anticipated benefit and tolerance.	I	B-NR	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
3. High-dose, very early mobilization within 24 hours of stroke onset should not be performed because it can reduce the odds of a favorable outcome at 3 months.	III: Harm	B-R	Recommendation wording modified from 2016 Rehab Guidelines to match Class III stratifications. LOE revised. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
The AVERT RCT (A Very Early Rehabilitation Trial) compared high-dose, very ecare mobility. ²⁴³ High-dose mobilization protocol interventions included the for within 24 hours of stroke onset whereas usual care typically was 24 hours af a focus on sitting, standing, and walking activity; and there were at least 3 ac compared with usual care. Favorable outcome at 3 months after stroke was of A total of 2104 patients were randomly assigned (1:1). The results of the RCT dose, very early mobilization group had less favorable outcomes (46% versus group: 8% versus 7% of patients died in the very early mobilization group and serious adverse event with high-dose, very early mobilization.	Ilowing: Mobilizati ter the onset of str dditional out-of-be defined as an mRS showed that paties 50%) than those	on was begun roke; there was d sessions s score of 0 to 2. ents in the high- in the usual care	See Table LVIII in online Data Supplement 1.
4. It is recommended that all individuals with stroke be provided a formal assessment of their activities of daily living and instrumental activities of daily living, communication abilities, and functional mobility before discharge from acute care hospitalization and the findings be incorporated into the care transition and the discharge planning process.	I	B-NR	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
5. A functional assessment by a clinician with expertise in rehabilitation is recommended for patients with an acute stroke with residual functional deficits.	I	C-LD	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
6. The effectiveness of fluoxetine or other selective serotonin reuptake inhibitors to enhance motor recovery is not well established.	lib	C-LD	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE revised from 2016 Rehab Guidelines.

5. In-Hospital Management of AIS: Treatment of Acute Complications

5.1. Cerebellar and Cerebral Edema

5.1. Cerebellar and Cerebral Edema	COR	LOE	New, Revised, or Unchanged
1. Ventriculostomy is recommended in the treatment of obstructive hydrocephalus after a cerebellar infarct. Concomitant or subsequent decompressive craniectomy may or may not be necessary on the basis of factors such as infarct size, neurological condition, degree of brainstem compression, and effectiveness of medical management.	I	C-LD	Recommendation revised from 2014 Cerebral Edema.
Ventriculostomy is a well-recognized effective treatment for the management of acute obstructive hydrocephalus and is often effective in isolation in relieving symptoms, even among patients with acute ischemic cerebellar stroke. ^{244,245} Thus, in patients who develop symptoms of obstructive hydrocephalus from a cerebellar stroke, emergency ventriculostomy is a reasonable first step in the surgical management paradigm. If cerebrospinal diversion by ventriculostomy fails to improve neurological function, decompressive suboccipital craniectomy should be performed. ²⁴⁴⁻²⁴⁶ Although a risk of upward herniation exists with ventriculostomy alone, it can be minimized with conservative cerebrospinal fluid drainage or subsequent decompression if the cerebellar infarct causes significant edema or mass effect. ^{244,245}		See Table LIX in online Data Supplement 1.	

5.1. Cerebellar and Cerebral Edema (Continued)	COR	LOE	New, Revised, or Unchanged
2. Decompressive suboccipital craniectomy with dural expansion should be performed in patients with cerebellar infarction causing neurological deterioration from brainstem compression despite maximal medical therapy. When deemed safe and indicated, obstructive hydrocephalus should be treated concurrently with ventriculostomy.	I	B-NR	Recommendation revised from 2014 Cerebral Edema.
The data support decompressive cerebellar craniectomy for the management stroke with mass effect. ^{244–246} This surgery is indicated as a therapeutic int deterioration caused by cerebral edema as a result of cerebellar infarction with medical therapy or ventriculostomy in the setting of obstructive hydro	ervention in cases that cannot be oth	of neurological	See Table LIX in online Data Supplement 1.
3. When considering decompressive suboccipital craniectomy for cerebellar infarction, it may be reasonable to inform family members that the outcome after cerebellar infarct can be good after sub-occipital craniectomy.	llb	C-LD	Recommendation and Class unchanged from 2014 Cerebral Edema. Wording revised and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
4. Patients with large territorial supratentorial infarctions are at high risk for complicating brain edema and increased intracranial pressure. Discussion of care options and possible outcomes should take place quickly with patients (if possible) and caregivers. Medical professionals and caregivers should ascertain and include patient-centered preferences in shared decision making, especially during prognosis formation and considering interventions or limitations in care.	I	C-EO	New recommendation.
Cerebral edema can cause serious and even life-threatening complications in supratentorial infarctions. Although less severe edema can be managed medical effective option for very severe cases; in such instances, timely decompressive mortality. ²⁴⁷ Nevertheless, there is evidence that persistent morbidity is common about end-of-life and degree of treatment performed in the face of severe neuropersonal severe endertheless.	y, surgical treatmen e surgery has been a n and individual pree	t may be the only shown to reduce existing decisions	
5. Patients with major infarctions are at high risk for complicating brain edema. Measures to lessen the risk of edema and close monitoring of the patient for signs of neurological worsening during the first days after stroke are recommended. Early transfer of patients at risk for malignant brain edema to an institution with neurosurgical expertise should be considered.	I	C-LD	Recommendation revised from 2013 AIS Guidelines. LOE revised. American Heart Stroke Association
6. In patients ≤60 years of age with unilateral MCA infarctions who deteriorate neurologically within 48 hours despite medical therapy, decompressive craniectomy with dural expansion is reasonable because it reduces mortality by close to 50%, with 55% of the surgical survivors achieving moderate disability (able to walk) or better (mRS score 2 or 3) and 18% achieving independence (mRS score 2) at 12 months.	lla	A	Recommendation revised from 2014 Cerebral Edema.
The pooled results of RCTs demonstrated significant reduction in mortality was performed within 48 hours of malignant MCA infarction in patients <60 reduction in mortality of 50% (95% Cl, 34–66) at 12 months. ²⁴⁷ These findir in the clinical trials in terms of inclusion and exclusion criteria, percent of N timing. ^{248,249} At 12 months, moderate disability (ability to walk) or better (mRS (22 of 51) of the total surgical group and 55% (92 of 40) of survivors compare the total nonsurgical group and 75% (9 of 12; P =0.318) of the nonsurgical su (mRS score 2) was achieved in 14% (7 of 51) of the total surgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 10 with 2% (1 of 42) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 8% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 42) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nonsurgical group and 9% (1 of 12) of the nons	See Tables LIX and LX in online Data Supplement 1.		
7. In patients >60 years of age with unilateral MCA infarctions who deteriorate neurologically within 48 hours despite medical therapy, decompressive craniectomy with dural expansion may be considered because it reduces mortality by close to 50%, with 11% of the surgical survivors achieving moderate disability (able to walk [mRS score 3]) and none achieving independence (mRS score ≤2) at 12 months.	llb	B-R	Recommendation revised from 2014 Cerebral Edema.
There is evidence that patients >60 years of age can have a reduction in n nonsurgical group versus 42% in the surgical group in DESTINY [Decompression of Malignant Infarction of the Middle Cerebral Artery] II) when decompression infarction is performed within 48 hours of stroke onset. ^{248,249,251-255} Howeve patients seem to be worse than those in patients <60 years of age. At 12 r to walk; mRS score 3) was achieved in 6% (3 of 47) of the total surgical group and 20% (3 of 12) months, independence (mRS score ≤2) was not achieved by any survivous section.	essive Surgery for ve craniectomy for r, functional outcor nonths, moderate oup and 11% (3 of 5) of the nonsurgio	the Treatment r malignant MCA nes in elderly disability (able 27) of survivors cal survivors. At	See Tables LIX and LX in online Data Supplement 1.

5.1. Cerebellar and Cerebral Edema (Continued)	COR	LOE	New, Revised, or Unchanged
 Although the optimal trigger for decompressive craniectomy is unknown, it is reasonable to use a decrease in level of consciousness attributed to brain swelling as selection criteria. 	lla	A	Recommendation, Class, and LOE unchanged from 2014 Cerebral Edema.
9. Use of osmotic therapy for patients with clinical deterioration from cerebral swelling associated with cerebral infarction is reasonable.	lla	C-LD	Recommendation reworded for clarity from 2014 Cerebral Edema. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
10. Use of brief moderate hyperventilation (P_{CO_2} target 30–34 mmHg) is a reasonable treatment for patients with acute severe neurological decline from brain swelling as a bridge to more definitive therapy.	lla	C-EO	New recommendation.
Hyperventilation is a very effective treatment to rapidly improve brain swellin cerebral vasoconstriction, which can worsen ischemia if the hypocapnia is su hyperventilation should be induced rapidly but should be used as briefly as p hypocapnia ($<30 \text{ mm Hg}$).	ustained or profour	nd.256 Thus,	
11. Hypothermia or barbiturates in the setting of ischemic cerebral or cerebellar swelling are not recommended.	III: No Benefit	B-R	Recommendation and LOE revised from 2014 Cerebral Edema. COR amended to conform with ACC/AHA 2015 Recommendation Classification System.
The data on the use of hypothermia and barbiturates for the management of data include only studies with small numbers of patients and unclear timin stroke onset. Hypothermia use has recently been shown to have no impact analysis of 6 RCTs. ²⁵⁷ Further research is recommended.	g of intervention w	ith respect to	See Tables LIX and LX in online Data Supplement 1.
12. Because of a lack of evidence of efficacy and the potential to increase the risk of infectious complications, corticosteroids (in conventional or large doses) should not be administered for the treatment of cerebral edema and increased intracranial pressure complicating ischemic stroke.	III: Harm	A	Recommendation wording modified from 2013 AIS Guidelines to match Class III stratifications. LOE unchanged. Class amended to conform with ACC/AHA 2015 Recommendation Classification System.
5.2. Seizures	\mathbf{O}	ZP	
5.2 Seizures	COR	LOF	New Revised or Unchanged

5.2. Seizures	COR	LOE	New, Revised, or Unchanged
 Recurrent seizures after stroke should be treated in a manner similar to when they occur with other acute neurological conditions, and anti-seizure drugs should be selected based upon specific patient characteristics. 	I	C-LD	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.
2. Prophylactic use of anti-seizure drugs is not recommended.	III: No Benefit	B-R	Recommendation reworded for clarity from 2013 AlS Guidelines. LOE revised. COR amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.

6. In-Hospital Institution of Secondary Prevention: Evaluation

6.1. Brain Imaging

6.1. Brain Imaging	COR	LOE	New, Revised, or Unchanged
1. Routine use of brain MRI in all patients with AIS is not cost-effective and is not recommended for initial diagnosis or to plan subsequent treatment.	III: No Benefit	B-NR	New recommendation.
2. In some patients with AIS, the use of MRI might be considered to provide additional information for initial diagnosis or to plan subsequent treatment, although the effect on outcomes is uncertain.	llb	C-EO	New recommendation.
Diagnostic testing is cost-effective when it leads to a change in treatment that imp of all patients with acute stroke has been shown to be cost-effective primarily beca and the avoidance of antithrombotic treatment in these patients. ⁷⁰ In many patients can be made accurately on the basis of the clinical presentation and either a negati ischemic changes, which can be detected in the majority of patients with careful more sensitive than CT for detecting AIS, ^{66,67} systematic reviews with meta-analys have shown that routine use of MRI in all patients with AIS is not cost-effective. ^{68,66} shown poor or no association between the pattern on ischemic lesions on brain MI Specifically, the pattern of acute multiple infarcts in multiple cerebral circulations h and a negative likelihood ratio of 0.96 for cardioembolic etiologic classification (con and a positive likelihood ratio of 1.18 and a negative likelihood ratio of 0.98 for sub on long-term cardiac monitoring (combined data from 2 studies ^{258,260}). In some pat those with uncertain clinical stroke localization who are candidates for early CEA o demonstration of an area of restricted diffusion on DW-MRI may be helpful in selec outcomes. However, there are inadequate data at this time to establish which patir routine use is not recommended. More research is needed to determine criteria for	ause of the detection s, the diagnosis of is tive NCCT or one shu attention. ⁷¹ Althou es and decision-ana ³ Studies of patients RI and etiologic clas has a positive likeliho mbined data from 4 psequent detection of tients with negative r stenting for second cting treatment that ents will benefit from	n of acute ICH achemic stroke owing early gh DW-MRI is alytic modeling with AIS have sification. ²⁵⁸⁻²⁶⁶ ood ratio of 1.41 studies ^{263-265,267}) of atrial fibrillation NCCT such as dary prevention, improves n DW-MRI, and its	See Tables XV, LXI, and LXII in online Data Supplement 1.

6.2. Vascular Imaging

6.0 Vecesiler Imeging	COR	LOE	New Deviced or Unchanged
6.2. Vascular Imaging	COR	LUE	New, Revised, or Unchanged
 For patients with nondisabling (mRS score 0–2) AIS in the carotid territory who are candidates for CEA or stenting, noninvasive imaging of the cervical vessels should be performed routinely within 24 hours of admission. 	I	B-NR	New recommendation. Heart Stroke Association -
Past data have indicated that the risk of recurrent stroke caused by symptomatic carotid stenosis is highest early after the initial event. ^{268–272} Although there is evidence that early or emergency revascularization via either CEA or carotid angioplasty and stenting may be safe in selected cases, ^{273–275} there are no high-quality prospective data supporting early versus late carotid revascularization in all cases. ²⁷⁶ In cases of nondisabling stroke, a meta-analysis by De Rango et al ²⁶⁹ demonstrates high rates of complications when treated <48 hours after the initial event and no difference in risks when treated between 0 and 7 days and 0 and 15 days. Revascularization between 48 hours and 7 days after initial stroke is supported by the data in cases of nondisabling stroke (mRS score 0–2). ²⁷⁷ Imaging within 24 hours of admission is feasible and recommended to facilitate CEA/carotid angioplasty and stenting in eligible patients in the 48- to 72-hour window.			See Table LXIII in online Data Supplement 1.
2. In patients with AIS, routine noninvasive imaging by means of CTA or MRA of the intracranial vasculature to determine the presence of intracranial arterial stenosis or occlusion is not recommended to plan subsequent secondary preventive treatment.	III: No Benefit	A	New recommendation.
3. In some patients with AIS, noninvasive imaging by means of CTA or MRA of the intracranial vasculature to provide additional information to plan subsequent secondary preventive treatment may be reasonable, although the effect on outcomes is uncertain.	llb	C-EO	New recommendation.
Intracranial atherosclerosis is associated with a high risk of recurrent stroke, ofter There is no RCT evidence that patients with AIS and symptomatic intracranial ste from other patients with ischemic stroke of presumed atherosclerotic cause. In Symptomatic Intracranial Disease), warfarin provided no benefit over aspirin 3 taking antithrombotics at the time of the qualifying event. ²⁸⁰ The SAMMPRIS stuc Management for Preventing Recurrent Stroke in Intracranial Stenosis) showed no to aggressive medical therapy that included aspirin 325 mg/d and clopidogrel 75 again even in those who were taking antithrombotics at the time of qualifying historical control subjects from similar patients in WASID, the medical treatmer almost 2-fold lower risk of any stroke or death within 30 days or ischemic stu artery after 30 days. Whether this was the result of dual antiplatelet treatment wit remains to be demonstrated by an RCT. ^{282–284} Thus, the added utility and cost-6 CTA or MRA of the intracranial vessels to identify intracranial arterial steno-oc therapy that will ultimately improve outcomes are unproven. Moreover, MRA and stenosis, ^{285,286} so any data from the angiographically based WASID or SAMMPRIS	See Tables LXIV and LXV in online Data Supplement 1.		

6.3. Cardiac Evaluation

6.3. Cardiac Evaluation	COR	LOE	New, Revised, or Unchanged
1. Cardiac monitoring is recommended to screen for atrial fibrillation and other potentially serious cardiac arrhythmias that would necessitate emergency cardiac interventions. Cardiac monitoring should be performed for at least the first 24 hours.	I	B-NR	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. The clinical benefit of prolonged cardiac monitoring to detect atrial fibrillation after AIS is uncertain.	llb	B-R	New recommendation.
3. In some patients with AIS, prolonged cardiac monitoring to provide additional information to plan subsequent secondary preventive treatment may be reasonable, although the effect on outcomes is uncertain.	llb	C-EO	New recommendation.
24 months, oral anticoagulation begun within 3 months is superior to aspirin death, stroke, MI, and systemic embolism (HR, 0.60; 95% Cl, 0.41–0.87). ²⁸⁷ by a variety of techniques, atrial fibrillation is newly detected in nearly a quar TIA. ²⁸⁸ However, in the few RCTs of prolonged cardiac monitoring after stroke significant benefit of oral anticoagulation for stroke prevention in such patien In CRYSTAL AF (Study of Continuous Cardiac Monitoring to Assess Atrial Fibri at 36 months, atrial fibrillation was detected in 30% of 221 patients with imp 3% of 220 control subjects (<i>P</i> <0.001), but the occurrence of TIA or ischemic cardiac monitor group and 11% in the control group (<i>P</i> =0.64). ^{291,292} In Find-AI in Stroke–Evaluation of Enhanced and Prolonged Holter Monitoring), atrial fib 200 patients with 10-day Holter monitoring at baseline, 3 months, and 6 mor the standard care group who had at least 24 hours of rhythm monitoring (<i>P</i> == difference in recurrent stroke at 12 months (3.7% versus 5.4%; <i>P</i> =0.46). ²⁹⁴ C failed to show a difference in outcomes. ^{290,293,295} All of these studies were unc clinical end points. Thus, the appropriate patient selection criteria for prolong	atients with TIA or ischemic stroke and atrial fibrillation detected by ECG at the time or within the preceding months, oral anticoagulation begun within 3 months is superior to aspirin for the prevention of vascular th, stroke, MI, and systemic embolism (HR, 0.60; 95% Cl, 0.41–0.87). ²⁸⁷ With prolonged cardiac monitoring a variety of techniques, atrial fibrillation is newly detected in nearly a quarter of patients with stroke or ²⁸⁸ However, in the few RCTs of prolonged cardiac monitoring after stroke with clinical end points, no ificant benefit of oral anticoagulation for stroke prevention in such patients has been demonstrated. ^{289–294} :RYSTAL AF (Study of Continuous Cardiac Monitoring to Assess Atrial Fibrillation After Cryptogenic Stroke), 6 months, atrial fibrillation was detected in 30% of 221 patients with implantable cardiac monitors and in of 220 control subjects (P <0.001), but the occurrence of TIA or ischemic stroke was 9% in the implantable diac monitor group and 11% in the control group (P =0.64). ^{291,292} In Find-AF _{RANDOMISED} (Finding Atrial Fibrillation troke–Evaluation of Enhanced and Prolonged Holter Monitoring), atrial fibrillation was detected in 14% of patients with 10-day Holter monitoring at baseline, 3 months, and 6 months versus 5% of 198 patients in standard care group who had at least 24 hours of rhythm monitoring (P =0.002). There was no significant erence in recurrent stroke at 12 months (3.7% versus 5.4%; P =0.46). ²⁹⁴ Other smaller studies have also ed to show a difference in outcomes. ^{290,293,295} All of these studies were underpowered for the secondary ical end points. Thus, the appropriate patient selection criteria for prolonged cardiac monitoring and the ical benefits of doing so remain uncertain at this time. Further randomized trials are planned or ongoing and		
 Routine use of echocardiography in all patients with AIS to plan subsequent secondary preventive treatment is not cost-effective and is not recommended. 	III: No Benefit	B-NR	New recommendation.
5. In selected patients with AIS, echocardiography to provide additional information to plan subsequent secondary preventive treatment may be reasonable.	llb	B-R	New recommendation.
Current evidence on cost-effectiveness is insufficient to justify routine use of echocardiography in stroke patients. Those patients with known or newly discovered atrial fibrillation by ECG will benefit from oral anticoagulation regardless of echocardiographic findings. The risk of recurrent stroke associated with most echocardiographic lesions and the efficacy of treatment in reducing that risk are unclear. The estimated yield and accuracy of echocardiography in detecting intracardiac thrombus indicate that for unselected patients, transthoracic echocardiography and transesophageal echocardiography will produce at least as many false-positive as true-positive diagnoses. Intracardiac thrombus occurs almost exclusively in patients with clinical evidence of heart disease but is rare even in them. ²⁹⁶ Additional research on how to identify patients likely to harbor intracardiac thrombus, on recurrent stroke risk in patients with intracardiac thrombus, and on the efficacy of oral anticoagulation in reducing that risk is needed. ²⁹⁶⁻²⁹⁸ Five RCTs have evaluated mechanical closure of echocardiographically detected patent foramen ovale to prevent recurrent stroke in patients without obvious cause for their index stroke. ²⁹⁹⁻³⁰⁴ All 5 suffered from potential bias resulting from unblinded investigators determining which events should be referred for blinded end-point adjudication. Three had many more patients lost to follow-up than stroke end points, making their results unreliable. ^{299,301-303} Of 2 RCTs with 1% lost to follow-up, 1 showed no benefit of closure over antithrombotic therapy alone over a 2-year period of 1.2 strokes (2.9%) versus 13 strokes (3.1%; $P=0.79$), ³⁰⁴ and the other showed a reduction in all stroke versus antiplatelet therapy alone over a mean of 5.3 years of 0 versus 14 (P < 0.001) with rates at 5 years of 0% and 5%. There was, however, no change in disabling stroke, 0 versus 1 ($P=0.63$), over the duration of the trial. ³⁰⁰ These 2 trials had different highly restrictive eligibility cr			See Tables LXIX and LXX in online Data Supplement 1.

6.4. Glucose

6.4. Glucose	COR	LOE	New, Revised, or Unchanged	
1. After AIS, it is reasonable to screen all patients for diabetes mellitus with testing of fasting plasma glucose, hemoglobin A1c, or an oral glucose tolerance test. Choice of test and timing should be guided by clinical judgment and recognition that acute illness may temporarily perturb measures of plasma glucose. In general, hemoglobin A1c may be more accurate than other screening tests in the immediate post-event period.	lla	C-EO	Recommendation wording modified from 2014 Secondary Prevention to match Class Ila stratifications and reworded for clarity. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.	

6.5. Cholesterol

6.5. Cholesterol	.5. Cholesterol COR LOE					
 Routine measurement of blood cholesterol levels in all patients with ischemic stroke presumed to be of atherosclerotic origin who are not already taking a high-intensity statin is not recommended. 	III: No Benefit	New recommendation.				
2. Measurement of blood cholesterol levels in patients with ischemic stroke presumed to be of atherosclerotic origin who are already taking an optimized regimen of statin therapy may be useful for identifying patients who would be candidates for outpatient proprotein convertase subtilisin/kexin type 9 inhibitor treatment to reduce the risk of subsequent cardiovascular death, MI, or stroke.	New recommendation.					
The "2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Redu Risk in Adults" recommend statin therapy for secondary prevention for adults cardiovascular disease (ASCVD), including stroke presumed to be of atheroso identified for treatment or titration to a specific low-density lipoprotein chole: 2016 European Society of Cardiology/European Atherosclerosis Society guide dyslipidemias and the 2014 guidelines from the UK National Institute for Hea recommendations based on clinical factors and not blood cholesterol measu can be recommended in patients with stroke presumed to be of atherosclero of blood cholesterol. For patients with stroke presumed to be of atherosclero of blood cholesterol. For patients with stroke presumed to be of atherosclero of blood cholesterol. For patients with stroke presumed to be of that the 2012 Society guidelines are based on LDL-C levels. ⁷ It is of note that the 2012 Society guidelines recommend a target LDL-C <2.0 mmol/L or >50% reduct cerebrovascular disease. ³⁰⁷ The FOURIER study (Further Cardiovascular Outc Inhibition in Subjects With Elevated Risk) randomized 27 564 patients with Cl fasting LDL-C level or non-high-density lipoprotein cholesterol who were tak lowering therapy to subcutaneous injections of evolocumab or placebo. Over evolocumab treatment significantly reduced the risk of the composite primar MI, stroke, hospitalization for unstable angina, or coronary revascularization Cl, 0.79–0.92) and the composite secondary end point of cardiovascular dea HR, 0.80; 95% Cl, 0.73–0.88). The number needed to treat to prevent 1 card a period of 2 years was 74 with an estimated 2-year cost of \$2.1 million. ³⁰⁸	s with clinical ather clerotic origin. No d sterol (LDL-C) goal. elines for the mana lth Care Excellence rements. ^{305,306} Thus tic origin without m e the result of nona the of value because Canadian Cardiovas ion of LDL-C for pa omes Research Witi inically evident ASC king an optimized re a mean follow-up y end point of card (9.8% versus 11.30 th, MI, or stroke (5.	rosclerotic lata were . ⁷ The gement of a also contain s, statin therapy neasurement therosclerotic the primary scular tients with th PCSK9 CVD and elevated egimen of lipid- of 2.2 years, iovascular death, %; HR, 0.85; 95% .9% versus 7.4%;	See Tables LXXI and LXXII in online Data Supplement 1. American Heart Stroke Association Association.			

6.6. Other Tests for Secondary Prevention

6.6. Other Tests for Secondary Prevention	COR	LOE	New, Revised, or Unchanged
1. Baseline troponin assessment is recommended in patients presenting with AIS but should not delay initiation of IV alteplase or mechanical thrombectomy.	I	C-LD	Recommendation reworded for clarity from 2013 AIS Guidelines. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
			See Table LXXXIII in online Data Supplement 1 for original wording.
2. Routine screening for hyperhomocysteinemia among patients with a recent ischemic stroke is not indicated.	III: No Benefit	C-EO	Recommendation reworded for clarity from 2014 Secondary Prevention. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
			See Table LXXXIII in online Data Supplement 1 for original wording.

6.6. Other Tests for Secondary Prevention (Continued)	COR	LOE	New, Revised, or Unchanged		
3. The usefulness of screening for thrombophilic states in patients with ischemic stroke is unknown.	lib	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.		
A recent review article concludes that there is little, if any, contribution of the development of arterial thrombotic events and therefore tests for inherited th for the evaluation of stroke. ³⁰⁹					
4. Anticoagulation might be considered in patients who are found to have abnormal findings on coagulation testing after an initial ischemic stroke, depending on the abnormality and the clinical circumstances.	lib	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.		
5. Routine testing for antiphospholipid antibodies is not recommended for patients with ischemic stroke who have no other manifestations of the antiphospholipid syndrome and who have an alternative explanation for their ischemic event, such as atherosclerosis, carotid stenosis, or atrial fibrillation.	III: No Benefit	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. COR and LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.		
6. Routine screening of patients with recent ischemic stroke for obstructive sleep apnea (OSA) is not recommended.	III: No Benefit	B-R	New recommendation.		
obstructive sleep apnea (USA) is not recommended. Numerous studies have established an association between OSA and stroke. OSA is highly prevalent among ischemic stroke patients and has been associated with considerable morbidity, including increased risk of cardiovascular and cerebrovascular events, worse prognosis, and higher mortality. Continuous positive airway pressure remains the most effective medical therapy for OSA. ³¹⁰⁻³¹⁴ However, secondary prevention RCTs showed no benefit of treating moderate to severe OSA with continuous positive airway pressure in preventing cardiovascular events or death in patients with previous stroke. ^{315,316} Thus, the routine screening for OSA of all patients with AIS is not beneficial for the secondary prevention of cardiovascular events or death. See Table LXXIII in online Data Supplement 1.					

6.7. Antithrombotic Treatment

6.7. Antithrombotic Treatment	COR	LOE	New, Revised, or Unchanged
1. For patients with non-cardioembolic AIS, the use of antiplatelet agents rather than oral anticoagulation is recommended to reduce the risk of recurrent stroke and other cardiovascular events.	al anticoagulation is recommended to reduce		Recommendation reworded for clarity from 2014 Secondary Prevention. Class and LOE unchanged. See Table LXXXIII in online Data Supplement 1 for original wording.
2. For patients who have a noncardioembolic AIS while taking aspirin, increasing the dose of aspirin or switching to an alternative antiplatelet agent for additional benefit in secondary stroke prevention is not well established.	Recommendation revised from 2014 Secondary Prevention.		
In patients with a noncardioembolic ischemic stroke, the therapeutic benefit of range of doses, but the hemorrhagic risk increases with higher doses. In pati the incident stroke, the benefit of switching to an alternative antiplatelet ager established. The SPS3 (Secondary Prevention of Small Subcortical Strokes) R clopidogrel to aspirin compared with placebo in patients with a recent small w at the time of their index event. However, the median time from qualifying ev was >40 days, so results may have underestimated benefit in the early posts analysis of 5 studies, including 3 RCTs and 2 observational registries, of patie taking aspirin at the time of the index event found a decreased risk of major or stroke in patients switching to an alternative antiplatelet agent or combination analysis included data from aspirin failure subgroups in the CHANCE trial of d with minor stroke or TIA and the SOCRATES trial of aspirin versus ticagrelor. I heterogeneity among the included studies, and results may have been driven to unmeasured confounders and bias. ³¹⁸	ents taking aspirin at or combination th CT found no benef vessel, lacunar stro- ent to enrollment in troke period. ³¹⁷ A r ents with noncardio cardiovascular eve n antiplatelet thera lual antiplatelet thera However, there wa	at the time of herapy is not well it from adding oke taking aspirin n the SPS3 trial recent meta- bembolic stroke nts and recurrent py. This erapy in patients is significant	

6.7. Antithrombotic Treatment (Continued)	COR	LOE	New, Revised, or Unchanged		
3. For patients who have a noncardioembolic AIS while taking antiplatelet therapy, switching to warfarin is not beneficial for secondary stroke prevention.	III: No Benefit	B-R	New recommendation.		
In patients taking aspirin at the time of baseline stroke in WARSS (Warfarin n=181), there was no difference in recurrence of stroke between those rar those who switched to warfarin (RR, 0.9; 95% Cl, 0.5–1.5; P =0.63). ^{319,320} In the WASID trial found no difference in the primary outcome of ischemic str death in patients taking antiplatelet therapy at the time of their qualifying er randomized to warfarin. ^{278,321}	domized to remain addition, post ho oke, brain hemorri	n on aspirin and c analysis from nage, or vascular	See Table LXXVI in online Data Supplement 1.		
4. For early secondary prevention in patients with noncardioembolic AIS, the selection of an antiplatelet agent should be individualized on the basis of patient risk factor profiles, cost, tolerance, relative known efficacy of the agents, and other clinical characteristics.	I	C-EO	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.		
5. For patients with a history of ischemic stroke, atrial fibrillation, and coronary artery disease, the usefulness of adding antiplatelet therapy to oral anticoagulants is uncertain for purposes of reducing the risk of ischemic cardiovascular and cerebrovascular events. Unstable angina and coronary artery stenting represent special circumstances in which management may warrant dual antiplatelet/oral anticoagulation.	llb	C-LD	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.		
6. For most patients with an AIS in the setting of atrial fibrillation, it is reasonable to initiate oral anticoagulation within 4 to 14 days after the onset of neurological symptoms.	B-NR	Recommendation revised from 2014 Secondary Prevention.			
A multicenter prospective cohort of 1029 patients with AIS and newly diag better composite outcome of stroke, TIA, systemic embolism, sICH, and m 90 days when anticoagulant was initiated 4 to 14 days from stroke onset starting anticoagulation at 4–14 compared with <4 days); high CHADS ₂ -V ₄ large ischemic lesions, and type of anticoagulation were associated with a prospective, open-label study of patients (n=60) with atrial fibrillation ar score <9) treated with rivaroxaban for ≤14 days found no symptomatic he days from initiation. ²⁰⁷	Aajor extracranial t (HR 0.53; 95% CI, ASC score, high NI poorer outcomes. ² nd mild to modera	bleeding within 0.30–0.93 for HSS score, ²² In addition, te AIS (NIHSS	See Table EXXVII in online Data Supplement 1. American Heart Stroke Association		
7. For patients with AIS and hemorrhagic transformation, initiation or continuation of antiplatelet or anticoagulation therapy may be considered, depending on the specific clinical scenario and underlying indication.	llb	B-NR	Recommendation revised from 2014 Secondary Prevention.		
Numerous observational studies suggest that antithrombotics can be safely i AIS and hemorrhagic conversion. Individual assessment of the clinical indica is warranted. ^{322,323}			See Table LXXVII in online Data Supplement 1.		
8. For patients with AIS and extracranial carotid or vertebral arterial dissection, treatment with either antiplatelet or anticoagulant therapy for 3 to 6 months may be reasonable.	llb	B-R	Recommendation revised from 2014 Secondary Prevention.		
The CADISS (Cervical Artery Dissection in Stroke Study) group published II feasibility trial of anticoagulation versus antiplatelet therapy in 250 par or vertebral artery dissection recruited from 46 centers in the United King outcome was ipsilateral stroke or all-cause mortality within 3 months of to-treat analysis, and there were no significant differences between grou in rates of major bleeding. As a phase II trial, the study concluded that a not be feasible, driven primarily by low event rates in both groups. Additi of central radiological confirmation in 20% of cases and a mean time to perhaps limits generalizability in the hyperacute period. Nonetheless, the previous observational studies that found no significant difference in clin anticoagulation compared with antiplatelet therapy in patients with cervi- addition, a follow-up CADISS analysis found no difference in the natural for associated stroke risk by treatment allocation, suggesting an overall far recurrent events. ³²⁵	ticipants with extr gdom and Australi randomization in a ps. There was als definitive phase II onal limitations in randomization of 3 CADISS trial supp ical outcomes wit cal artery dissection history of dissection	acranial carotid a. ³²⁴ The primary an intention- o no difference I trial would cluded a lack 8.65 days that borts numerous in the use of on (CeAD). In ng aneurysms	See Table LXXVIII in online Data Supplement 1.		

6.7. Antithrombotic Treatment (Continued)	COR	LOE	New, Revised, or Unchanged
9. For patients with AIS and extracranial carotid or vertebral arterial dissection who have definite recurrent cerebral ischemic events despite medical therapy, the value of EVT (stenting) is not well established.	llb	C-LD	Recommendation revised from 2014 Secondary Prevention.
There have been no controlled trials of EVT and stenting in patients with extr literature reflects small case series, individual case reports, and several syst review of the literature published until 2009 found 31 published reports (n=1 of 99% and procedural complication rate of 1.3%. However, these observation reporting bias. A retrospective analysis of patients with CeAD (n=161) compa with medical therapy alone found no difference in 90-day outcomes (adjuste P=0.56). With medical therapy alone, the overall prognosis and natural histon aneurysms, are favorable. ^{324,325} Therefore, the benefit of EVT and stenting in established, and consideration of EVT should be reserved for patients with de events despite medical therapy.	ematic reviews. ³²⁶ 40) with a technic: onal data are prone aring EVT (with and d OR, 0.62; 95% C ry of CeAD, includin patients with CeAD	A systematic al success rate to selection and I without stenting) I, 0.12–3.14; ng dissecting I is not well	See Table LXXVII in online Data Supplement 1.

6.8. Statins

	COR	LOE	New, Revised, or Unchanged
 Among patients already taking statins at the time of onset of ischemic stroke, continuation of statin therapy during the acute period is reasonable. 	lla	B-R	Recommendation and Class unchanged from 2013 AIS Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
2. High-intensity statin therapy should be initiated or continued as first-line therapy in women and men ≤75 years of age who have clinical ASCVD*, unless contraindicated.	I	А	Recommendation and Class unchanged from 2013 Cholesterol Guidelines.
3. In individuals with clinical ASCVD* in whom high-intensity statin therapy would otherwise be used, when high-intensity statin therapy is contraindicated or when characteristics predisposing to statin-associated adverse effects are present, moderate-intensity statin should be used as the second option if tolerated.	I	A	Recommendation and Class unchanged from 2013 Cholesterol Guidelines. American American Heart Stroke Association
4. In individuals with clinical ASCVD* >75 years of age, it is reasonable to evaluate the potential for ASCVD risk-reduction benefits and for adverse effects and drug-drug interactions and to consider patient preferences when initiating a moderate- or high-intensity statin. It is reasonable to continue statin therapy in those who are tolerating it.	lib	C-EO	Recommendation and Class unchanged from 2013 Cholesterol Guidelines. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System.
*Clinical ASCVD includes acute coronary syndromes, history of MI, stable or u arterial revascularization, stroke, TIA, or peripheral arterial disease presumed For high-intensity statin therapy, the 2013 ACC/AHA guidelines on the treatm atherosclerotic risk recommend atorvastatin 80 mg daily or rosuvastatin 20 r guidelines for contraindications to high-intensity statin therapy and recommenstatin therapy.	I to be of atheroscl ent of blood choles ng daily. ⁷ Please re	erotic origin. sterol to reduce ifer to these	See Table LXXI in online Data Supplement 1.
5. Patients with ischemic stroke and other comorbid ASCVD should be otherwise managed according to the 2013 ACC/AHA cholesterol guidelines, which include lifestyle modification, dietary recommendations, and medication recommendations.	I	A	Recommendation, Class, and LOE unchanged from 2014 Secondary Prevention.
be otherwise managed according to the 2013 ACC/AHA cholesterol guidelines, which include lifestyle modification, dietary	I Ila	A C-LD	Recommendation, Class, and LOE unchanged from 2014 Secondary Prevention. New recommendation.

6.9. Carotid Revascularization

6.9. Carotid Revascularization	COR	LOE	New, Revised, or Unchanged
1. When revascularization is indicated for secondary prevention in patients with minor, nondisabling stroke (mRS score 0–2), it is reasonable to perform the procedure between 48 hours and 7 days of the index event rather than delay treatment if there are no contraindications to early revascularization.		B-NR	Recommendation revised from 2014 Secondary Prevention.
The risk of recurrent stroke resulting from symptomatic carotid stenosis is higher event. ²⁸⁶⁻²⁷² Although there is evidence that early or emergency revascularization and stenting may be safe in selected cases, ²⁷³⁻²⁷⁵ there are no high-quality prosp late carotid revascularization in all cases. ²⁷⁶ In cases of minor, nondisabling strol al ²⁶⁹ demonstrates favorable rates of complications when treated at least 48 hou are not different when treated between 0 to 7 and 0 to 15 days. Revascularization initial stroke is supported by these data in cases of nondisabling stroke (mRS sc	See Table LXIII in online Data Supplement 1.		

6.10. Smoking Cessation Intervention

6.10. Smoking Cessation Intervention	6.10. Smoking Cessation Intervention COR LC				
1. Healthcare providers should strongly advise every patient with AIS who has smoked in the past year to quit.	I	C-EO	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.		
2. Counseling, nicotine products, and oral smoking cessation medications are effective in helping smokers to quit.	I	А	Recommendation, Class, and LOE unchanged from 2014 Secondary Prevention.		
For smokers with an AIS, in-hospital initiation of high-intensity behavioral therapies is reasonable.	lla	B-R	New recommendation. American American		
4. For smokers with an AIS, in-hospital initiation of varenicline might be considered.	llb	B-R	AsNewsrecommendationan.		
 For smokers with an AIS, in-hospital initiation of interventions that incorporate both pharmacotherapy and behavioral support might be considered. 	B-R	New recommendation.			
A meta-analysis by the Cochrane group indicates that (1) high-intensity behavioral index hospitalization and include at least 1 month of supportive contact after discl among hospitalized patients, regardless of the patients' admitting diagnoses, ³³¹ a both pharmacotherapy and behavioral support enhance smoking cessation surintervention or usual care. ^{332,333} There are limited data on the efficacy of the variou and when they should be implemented after the occurrence of an acute atherosci blind, randomized, placebo-controlled trial in which 302 smokers hospitalized wit randomized to varenicline or placebo for 12 weeks showed that at 24 weeks abstivate group versus 25.8% in the placebo group. ³³⁴ Patients in both groups received low Korean smokers with AIS assessed a timely intervention strategy versus conventic comprised a certified nurse providing comprehensive education during admission discharge. Timely intervention was associated with greater odds of sustained smothers.	king cessation that incorporate ith minimal on strategies ticenter, double- y syndrome were 47.3% in the n the varenicline ig. A study of Fimely intervention nseling after	See Table LXXXI and LXXXII in online Data Supplement 1.			
6. It is reasonable to advise patients after ischemic stroke to avoid second-hand (passive) tobacco smoke.	B-NR	Recommendation reworded for clarity from 2014 Secondary Prevention. Class unchanged. LOE amended to conform with ACC/AHA 2015 Recommendation Classification System. See Table LXXXIII in online Data Supplement 1 for original wording.			

6.11. Stroke Education

6.11. Stroke Education	COR	LOE	New, Revised, or Unchanged
1. Patient education about stroke is recommended. Patients should be provided with information, advice, and the opportunity to talk about the impact of the illness on their lives.	I	C-EO	Recommendation and Class unchanged from 2016 Rehab Guidelines. LOE revised.

Additional reference support for this guideline is provided in online Data Supplement 1.200,336-402,404-421

Disclosures

Writing Group Disclosures

Writing Group Member	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
William J. Powers	University of North Carolina, Chapel Hill	NIH (coinvestigator on grant to develop MR CMR02 measurement)*; NIH (coinvestigator on clinical trial of dental health to prevent stroke)*	None	None	Cleveland Clinic*; Wake Forest University*; Ozarks Medical Center*	None	None	None
Alejandro A. Rabinstein	Mayo Clinic	None	None	None	None	None	None	None
Teri Ackerson	Saint Luke's Health System, AHA/ASA	None	None	None	None	None	None	None
Opeolu M. Adeoye	University of Cincinnati	NIH/NINDS*	None	None	None	Sense Diagnostics, LLC†	None	None
Nicholas C. Bambakidis	University Hospitals, Cleveland Medical Center	None	None	None	None	None	None	None
Kyra Becker	University of Washington School of Medicine Harborview Medical Center	None	None	None	Various law firms†	Heart S	lcon† merican troke ssociation。	None
José Biller	Loyola University Chicago	Accorda (DSMB committee member)*	None	None -	None	None	None	Journal of Stroke and Cerebrovascular Disease (family)† Up-to-Date (Editorial Board member)*; editor (self; Journal of Stroke and Cerebrovascular Disease, unpaid)
Michael Brown	Michigan State University College of Human Medicine, Emergency Medicine	None	None	None	Wicker Smith O'Hara McCoy & Ford PA*; Anthony T. Martino, Clark, Martino, PA*	None	None	None
Bart M. Demaerschalk	Mayo Clinic Neurology, Mayo Clinic Hospital	None	None	None	None	None	None	None
Brian Hoh	University of Florida	None	None	None	None	None	None	None
Edward C. Jauch	Medical University of South Carolina	Genentech (Executive Committee for PRISMS Study)*; Ischemia Care (Biomarker research study)*; NIH (PI StrokeNet hub)†	None	None	Defense*	Jan Medical*	None	None
Chelsea S. Kidwell	University of Arizona	None	None	None	None	None	None	None

Writing Group Disclosures Continued

Writing Group Member	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Thabele M. Leslie-Mazwi	Massachusetts General Hospital	None	None	None	None	None	None	None
Bruce Ovbiagele	Medical University of South Carolina	NIH (U01 NS079179, U54 HG007479)†	None	None	None	None	None	None
Phillip A. Scott	University of Michigan, Department of Emergency Medicine	NIH/NINDS (PI for NINDS Regional Coordinating Stroke Center grant RCC- 17)†	None	None	Medical legal consultant, defense and plaintiff*	None	None	None
Kevin N. Sheth	Yale University School of Medicine	None	Remedy (grant for PI on Clinical Trial)†; Bard (grant for PI on Clinical Trial)†; Stryker (Adjudication Committee)*	None	Defense and Plaintiff*	None	None	None
Andrew M. Southerland	University of Virginia	HRSA G01RH27869-01-00 (investigator, research salary support)†; American Academy of Neurology (Pl, project support)*; American Board of Psychiatry and Neurology (Faculty Fellowship, research and salary support)†; NHLBI, NINDS (U01 HL088942) (Cardiothoracic Surgical Trials Network)†	None	AHA/ASA*	Legal expert review*	Heart S	None merican troke ssociation.	<i>Neurology</i> ® journal*
Deborah V. Summers	St. Luke's Health System	None	None	None	None	None	None	None
David L. Tirschwell	University of Washington– Harborview Medical Center	None	None	None	None	None	St. Jude/ Abbott*	None

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be "significant" if (a) the person receives \$10 000 or more during any 12-month period, or 5% or more of the person's gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns \$10 000 or more of the fair market value of the entity. A relationship is considered to be "modest" if it is less than "significant" under the preceding definition. *Modest.

+Significant.

Reviewer Disclosures

Reviewer	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Karen L. Furie	Rhode Island Hospital	None	None	None	None	None	None	None
Steven J. Kittner	Veterans Affairs Maryland Health Care System; University of Maryland	None	None	None	None	None	None	None

Reviewer Disclosures Continued

Reviewer	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Lawrence R. Wechsler	University of Pittsburgh	None	None	None	None	None	None	None
Babu G. Welch	UT Southwestern Medical Center	None	None	Stryker Neurovascular*	None	None	Stryker Neurovascular*	None

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be "significant" if (a) the person receives \$10,000 or more during any 12-month period, or 5% or more of the person's gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns \$10,000 or more of the fair market value of the entity. A relationship is considered to be "modest" if it is less than "significant" under the preceding definition. *Modest.

References

- Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947. doi: 10.1161/STR.0b013e318284056a.
- Saposnik G, Barinagarrementeria F, Brown RD Jr, Bushnell CD, Cucchiara B, Cushman M, deVeber G, Ferro JM, Tsai FY; on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2011;42:1158–1192. doi: 10.1161/STR.0b013e31820a8364.
- 3. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Accuracy of prediction instruments for diagnosing large vessel occlusion in individuals with suspected stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:XXX–XXX. doi: 10.1161/STR. 00000000000160.
- 4. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Effect of dysphagia screening strategies on clinical outcomes after stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:XXX– XXX. doi: 10.1161/STR.00000000000159.
- 5. Schwamm LH, Audebert HJ, Amarenco P, Chumbler NR, Frankel MR, George MG, Gorelick PB, Horton KB, Kaste M, Lackland DT, Levine SR, Meyer BC, Meyers PM, Patterson V, Stranne SK, White CJ; on behalf of the American Heart Association Stroke Council; Council on Epidemiology and Prevention; Interdisciplinary Council on Peripheral Vascular Disease; Council on Cardiovascular Radiology and Intervention. Recommendations for the implementation of telemedicine within stroke systems of care: a policy statement from the American Heart Association. *Stroke*. 2009;40:2635–2660. doi: 10.1161/STROKEAHA.109.192361.
- 6. Higashida R, Alberts MJ, Alexander DN, Crocco TJ, Demaerschalk BM, Derdeyn CP, Goldstein LB, Jauch EC, Mayer SA, Meltzer NM, Peterson ED, Rosenwasser RH, Saver JL, Schwamm L, Summers D, Wechsler L, Wood JP; on behalf of the American Heart Association Advocacy Coordinating Committee. Interactions within stroke systems of care: a policy statement from the American Heart Association/ American Stroke Association. *Stroke*. 2013;44:2961–2984. doi: 10.1161/ STR.0b013e3182a6d2b2.
- Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW. 2013 ACC/ AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

[published corrections appear in *Circulation*. 2014;129:S46–S48 and *Circulation*. 2015;132:e396]. *Circulation*. 2014;129(suppl 2):S1–S45. doi: 10.1161/01.cir.0000437738.63853.7a.

- January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW. 2014 AHA/ACC/ HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/ American Heart Association Task Force on practice guidelines and the Heart Rhythm Society [published correction appears in *Circulation*. 2014;130:e270–271]. *Circulation*. 2014;130:2071–2104. doi: 10.1161/ CIR.0000000000000040.
- Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, Schwab S, Smith EE, Tamargo RJ, Wintermark M; on behalf of the American Heart Association Stroke Council. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:1222–1238. doi: 10.1161/01.str.0000441965.15164.d6.
- Holloway RG, Arnold RM, Creutzfeldt CJ, Lewis EF, Lutz BJ, McCann RM, Rabinstein AA, Saposnik G, Sheth KN, Zahuranec DB, Zipfel GJ, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Clinical Cardiology. Palliative and end-of-life care in stroke: a statement for healthcare professionals from the American Heart Association/ American Stroke Association. *Stroke*. 2014;45:1887–1916. doi: 10.1161/ STR.00000000000015.
- 11. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, Fang MC, Fisher M, Furie KL, Heck DV, Johnston SC, Kasner SE, Kittner SJ, Mitchell PH, Rich MW, Richardson D, Schwamm LH, Wilson JA; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in *Stroke*. 2015;46:e54]. *Stroke*. 2014;45:2160–2236. doi: 10.1161/STR.0000000000024.
- Smith EE, Saver JL, Alexander DN, Furie KL, Hopkins LN, Katzan IL, Mackey JS, Miller EL, Schwamm LH, Williams LS; on behalf of the AHA/ASA Stroke Performance Oversight Committee. Clinical performance measures for adults hospitalized with acute ischemic stroke: performance measures for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:3472– 3498. doi: 10.1161/STR.000000000000045.
- Singletary EM, Charlton NP, Epstein JL, Ferguson JD, Jensen JL, MacPherson AI, Pellegrino JL, Smith WW, Swain JM, Lojero-Wheatley LF, Zideman DA. Part 15: first aid: 2015 American Heart Association and American Red Cross guidelines update for first aid. *Circulation*. 2015;132(suppl 2):S574–S589. doi: 10.1161/CIR.00000000000269.
- 14. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, Meschia JF, Ovbiagele B, Yavagal DR; on behalf of the American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular

treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2015;46:3020–3035. doi: 10.1161/STR.000000000000074.

- 15. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, Saposnik G, Saver JL, Smith EE; on behalf of the American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in *Stroke*. 2016;47:e262]. *Stroke*. 2016;47:581–641. doi: 10.1161/STR.00000000000086.
- 16. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association [published corrections appear in *Stroke*. 2017;48:e78 and *Stroke*. 2017;48:e369]. *Stroke*. 2016;47:e98–e169. doi: 10.1161/STR.00000000000098.
- Ojike N, Ravenell J, Seixas A, Masters-Israilov A, Rogers A, Jean-Louis G, Ogedegbe G, McFarlane SI. Racial disparity in stroke awareness in the US: an analysis of the 2014 National Health Interview Survey. *J Neurol Neurophysiol.* 2016;7:365.
- Ekundayo OJ, Saver JL, Fonarow GC, Schwamm LH, Xian Y, Zhao X, Hernandez AF, Peterson ED, Cheng EM. Patterns of emergency medical services use and its association with timely stroke treatment: findings from Get With The Guidelines–Stroke. *Circ Cardiovasc Qual Outcomes*. 2013;6:262–269. doi: 10.1161/CIRCOUTCOMES.113.000089.
- Mochari-Greenberger H, Xian Y, Hellkamp AS, Schulte PJ, Bhatt DL, Fonarow GC, Saver JL, Reeves MJ, Schwamm LH, Smith EE. Racial/ ethnic and sex differences in emergency medical services transport among hospitalized US Stroke patients: analysis of the national Get With The Guidelines-Stroke Registry. J Am Heart Assoc. 2015;4:e002099. doi: 10.1161/JAHA.115.002099.
- Boden-Albala B, Stillman J, Roberts ET, Quarles LW, Glymour MM, Chong J, Moats H, Torrico V, Parides MC. Comparison of acute stroke preparedness strategies to decrease emergency department arrival time in a multiethnic cohort: the Stroke Warning Information and Faster Treatment Study. *Stroke*. 2015;46:1806–1812. doi: 10.1161/ STROKEAHA.114.008502.
- Berglund A, Svensson L, Wahlgren N, von Euler M; HASTA Collaborators. Face Arm Speech Time Test use in the prehospital setting, better in the ambulance than in the emergency medical communication center. *Cerebrovasc Dis.* 2014;37:212–216. doi: 10.1159/000358116.
- 22. De Luca A, Giorgi Rossi P, Villa GF; Stroke Group Italian Society Pre Hospital EMERGENCY SERVICES. The use of Cincinnati Prehospital Stroke Scale during telephone dispatch interview increases the accuracy in identifying stroke and transient ischemic attack symptoms. *BMC Health Serv Res.* 2013;13:513. doi: 10.1186/1472-6963-13-513.
- Lin CB, Peterson ED, Smith EE, Saver JL, Liang L, Xian Y, Olson DM, Shah BR, Hernandez AF, Schwamm LH, Fonarow GC. Emergency medical service hospital prenotification is associated with improved evaluation and treatment of acute ischemic stroke. *Circ Cardiovasc Qual Outcomes*. 2012;5:514–522. doi: 10.1161/CIRCOUTCOMES.112.965210.
- Katz BS, McMullan JT, Sucharew H, Adeoye O, Broderick JP. Design and validation of a prehospital scale to predict stroke severity: Cincinnati Prehospital Stroke Severity Scale. *Stroke*. 2015;46:1508–1512. doi: 10.1161/STROKEAHA.115.008804.
- Lima FO, Silva GS, Furie KL, Frankel MR, Lev MH, Camargo ÉC, Haussen DC, Singhal AB, Koroshetz WJ, Smith WS, Nogueira RG. Field assessment stroke triage for emergency destination: a simple and accurate prehospital scale to detect large vessel occlusion strokes. *Stroke*. 2016;47:1997–2002. doi: 10.1161/STROKEAHA.116.013301.
- Perez de la Ossa N, Carrera D, Gorchs M, Querol M, Millan M, Gomis M, Dorado L, Lopez-Cancio E, Hernandez-Perez M, Chicharro V, Escalada X, Jimenez X, Davalos A. Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale. *Stroke*. 2014;45:87–91. doi: 10.1161/ STROKEAHA.113.003071.
- 27. Hastrup S, Damgaard D, Johnsen SP, Andersen G. Prehospital acute stroke severity scale to predict large artery occlusion: design and

comparison with other scales. *Stroke*. 2016;47:1772–1776. doi: 10.1161/STROKEAHA.115.012482.

- Singer OC, Dvorak F, du Mesnil de Rochemont R, Lanfermann H, Sitzer M, Neumann-Haefelin T. A simple 3-item stroke scale: comparison with the National Institutes of Health Stroke Scale and prediction of middle cerebral artery occlusion. *Stroke*. 2005;36:773–776. doi: 10.1161/01. STR.0000157591.61322.df.
- Nazliel B, Starkman S, Liebeskind DS, Ovbiagele B, Kim D, Sanossian N, Ali L, Buck B, Villablanca P, Vinuela F, Duckwiler G, Jahan R, Saver JL. A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions. *Stroke*. 2008;39:2264–2267. doi: 10.1161/STROKEAHA.107.508127.
- American Heart Association/American Stroke Association. Severity-Based Stroke Triage Algorithm for EMS. http://www.heart.org/missionlifelinestroke. Accessed December 1, 2017.
- Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. *JAMA*. 2013;309:2480–2488.
- 32. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, Cardona P, Devlin TG, Frei DF, du Mesnil de Rochemont R, Berkhemer OA, Jovin TG, Siddiqui AH, van Zwam WH, Davis SM, Castaño C, Sapkota BL, Fransen PS, Molina C, van Oostenbrugge RJ, Chamorro Á, Lingsma H, Silver FL, Donnan GA, Shuaib A, Brown S, Stouch B, Mitchell PJ, Davalos A, Roos YB, Hill MD; HERMES Collaborators. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. *JAMA*. 2016;316:1279–1288. doi: 10.1001/ jama.2016.13647.
- 33. Ganesh A, Lindsay P, Fang J, Kapral MK, Côté R, Joiner I, Hakim AM, Hill MD. Integrated systems of stroke care and reduction in 30-day mortality: a retrospective analysis. *Neurology*. 2016;86:898–904. doi: 10.1212/WNL.000000000002443.
- Man S, Cox M, Patel P, Smith EE, Reeves MJ, Saver JL, Bhatt DL, Xian Y, Schwamm LH, Fonarow GC. Differences in acute ischemic stroke quality of care and outcomes by primary stroke center certification organization. *Stroke*. 2017;48:412–419. doi:10.1161/STROKEAHA.116.014426.
- 35. Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Xian Y, Hernandez AF, Peterson ED, Schwamm LH. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. *JAMA*. 2014;311:1632–1640.
- 36. Xian Y, Xu H, Lytle B, Blevins J, Peterson ED, Hernandez AF, Smith EE, Saver JL, Messe SR, Paulsen M, Suter RE, Reeves MJ, Jauch EC, Schwamm LH, Fonarow GC. Use of strategies to improve door-to-needle times with tissue-type plasminogen activator in acute ischemic stroke in clinical practice: findings from Target: Stroke. *Circ Cardiovasc Qual Outcomes.* 2017;10:e003227. doi: 10.1161/CIRCOUTCOMES.116.003227.
- Target Stroke Phase II website http://www.strokeassociation.org/ STROKEORG/Professionals/TargetStroke/Target-Stroke-Phase-II_ UCM_469859_Article.jsp#.Wk1CBd-nF3g. Accessed January 3, 2018.
- Scott PA, Meurer WJ, Frederiksen SM, Kalbfleisch JD, Xu Z, Haan MN, Silbergleit R, Morgenstern LB; INSTINCT Investigators. A multilevel intervention to increase community hospital use of alteplase for acute stroke (INSTINCT): a cluster-randomised controlled trial. *Lancet Neurol.* 2013;12:139–148. doi: 10.1016/S1474-4422(12)70311-3.
- Dirks M, Niessen LW, van Wijngaarden JD, Koudstaal PJ, Franke CL, van Oostenbrugge RJ, Huijsman R, Lingsma HF, Minkman MM, Dippel DW; PRomoting ACute Thrombolysis in Ischemic StrokE (PRACTISE) Investigators. Promoting thrombolysis in acute ischemic stroke. *Stroke*. 2011;42:1325–1330. doi: 10.1161/STROKEAHA.110.596940.
- Phabphal K, Hirunpatch S. The effectiveness of low-cost teleconsultation for emergency head computer tomography in patients with suspected stroke. *J Telemed Telecare*. 2008;14:439–442. doi: 10.1258/ jtt.2008.080603.
- Mitchell JR, Sharma P, Modi J, Simpson M, Thomas M, Hill MD, Goyal M. A smartphone client-server teleradiology system for primary diagnosis of acute stroke. *J Med Internet Res.* 2011;13:e31. doi: 10.2196/ jmir.1732.
- 42. Johnston KC, Worrall BB; Teleradiology Assessment of Computerized Tomographs Online Reliability Study. Teleradiology Assessment of Computerized Tomographs Online Reliability Study (TRACTORS) for acute stroke evaluation. *Telemed J E Health*. 2003;9:227–233. doi: 10.1089/153056203322502605.

- 43. Demaerschalk BM, Bobrow BJ, Raman R, Ernstrom K, Hoxworth JM, Patel AC, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Meyer BC; for the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) in Arizona–The Initial Mayo Clinic Experience (AZ TIME) Investigators. CT interpretation in a telestroke network: agreement among a spoke radiologist, hub vascular neurologist, and hub neuroradiologist. *Stroke*. 2012;43:3095–3097. doi: 10.1161/ STROKEAHA.112.666255.
- 44. Spokoyny I, Raman R, Ernstrom K, Demaerschalk BM, Lyden PD, Hemmen TM, Guzik AK, Chen JY, Meyer BC. Pooled assessment of computed tomography interpretation by vascular neurologists in the STRokE DOC telestroke network. J Stroke Cerebrovasc Dis. 2014;23:511–515. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.023.
- Puetz V, Bodechtel U, Gerber JC, Dzialowski I, Kunz A, Wolz M, Hentschel H, Schultheiss T, Kepplinger J, Schneider H, Wiedemann B, Wojciechowski C, Reichmann H, Gahn G, von Kummer R. Reliability of brain CT evaluation by stroke neurologists in telemedicine. *Neurology*. 2013;80:332–338. doi: 10.1212/WNL.0b013e31827f07d0.
- 46. Demaerschalk BM, Raman R, Ernstrom K, Meyer BC. Efficacy of telemedicine for stroke: pooled analysis of the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) and STRokE DOC Arizona telestroke trials. *Telemed J E Health*. 2012;18:230–237. doi: 10.1089/tmj.2011.0116.
- Kepplinger J, Barlinn K, Deckert S, Scheibe M, Bodechtel U, Schmitt J. Safety and efficacy of thrombolysis in telestroke: a systematic review and meta-analysis. *Neurology*. 2016;87:1344–1351. doi: 10.1212/ WNL.0000000000003148.
- 48. Fong WC, Ismail M, Lo JW, Li JT, Wong AH, Ng YW, Chan PY, Chan AL, Chan GH, Fong KW, Cheung NY, Wong GC, Ho HF, Chan ST, Kwok VW, Yuen BM, Chan JH, Li PC. Telephone and teleradiology-guided thrombolysis can achieve similar outcome as thrombolysis by neurologist on-site. *J Stroke Cerebrovasc Dis*. 2015;24:1223–1228. doi: 10.1016/j.jstrokecerebrovasdis.2015.01.022.
- 49. Barlinn J, Gerber J, Barlinn K, Pallesen LP, Siepmann T, Zerna C, Wojciechowski C, Puetz V, von Kummer R, Reichmann H, Linn J, Bodechtel U. Acute endovascular treatment delivery to ischemic stroke patients transferred within a telestroke network: a retrospective observational study. *Int J Stroke*. 2017;12:502–509. doi: 10.1177/1747493016681018.
- Vagal A, Meganathan K, Kleindorfer DO, Adeoye O, Hornung R, Khatri P. Increasing use of computed tomographic perfusion and computed tomographic angiograms in acute ischemic stroke from 2006 to 2010. *Stroke*. 2014;45:1029–1034. doi: 10.1161/STROKEAHA.113.004332.
- Demaerschalk BM, Yip TR. Economic benefit of increasing utilization of intravenous tissue plasminogen activator for acute ischemic stroke in the United States. *Stroke*. 2005;36:2500–2503. doi: 10.1161/01. STR.0000185699.37843.14.
- Demaerschalk BM, Durocher DL. How diagnosis-related group 559 will change the US Medicare cost reimbursement ratio for stroke centers. *Stroke*. 2007;38:1309–1312. doi: 10.1161/01.STR.0000260185.74694. a7.
- Penaloza-Ramos MC, Sheppard JP, Jowett S, Barton P, Mant J, Quinn T, Mellor RM, Sims D, Sandler D, McManus RJ; on behalf of the BBC CLAHRC Investigators. Cost-effectiveness of optimizing acute stroke care services for thrombolysis. *Stroke*. 2014;45:553–562. doi: 10.1161/ STROKEAHA.113.003216.
- 54. Tan Tanny SP, Busija L, Liew D, Teo S, Davis SM, Yan B. Costeffectiveness of thrombolysis within 4.5 hours of acute ischemic stroke: experience from Australian stroke center. *Stroke*. 2013;44:2269–2274. doi: 10.1161/STROKEAHA.113.001295.
- Health Quality Ontario. Mechanical thrombectomy in patients with acute ischemic stroke: a health technology assessment. Ont Health Technol Assess Ser. 2016;16:1–79.
- Ganesalingam J, Pizzo E, Morris S, Sunderland T, Ames D, Lobotesis K. Cost-utility analysis of mechanical thrombectomy using stent retrievers in acute ischemic stroke. *Stroke*. 2015;46:2591–2598. doi: 10.1161/ STROKEAHA.115.009396.
- 57. Song S, Fonarow GC, Olson DM, Liang L, Schulte PJ, Hernandez AF, Peterson ED, Reeves MJ, Smith EE, Schwamm LH, Saver JL. Association of Get With The Guidelines–Stroke program participation and clinical outcomes for Medicare beneficiaries with ischemic stroke. *Stroke*. 2016;47:1294–1302. doi: 10.1161/STROKEAHA. 115.011874.
- Generalized efficacy of t-PA for acute stroke: subgroup analysis of the NINDS t-PA Stroke Trial. *Stroke*. 1997;28:2119–2225.

- Adams HP Jr, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, Woolson RF, Hansen MD. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). *Neurology*. 1999;53:126–131.
- Frankel MR, Morgenstern LB, Kwiatkowski T, Lu M, Tilley BC, Broderick JP, Libman R, Levine SR, Brott T. Predicting prognosis after stroke: a placebo group analysis from the National Institute of Neurological Disorders and Stroke rt-PA Stroke Trial. *Neurology*. 2000;55:952–959.
- 61. Wahlgren N, Ahmed N, Eriksson N, Aichner F, Bluhmki E, Dávalos A, Erilä T, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Köhrmann M, Larrue V, Lees KR, Machnig T, Roine RO, Toni D, Vanhooren G; for the Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy Investigators. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy (SITS-MOST). *Stroke*. 2008;39:3316–3322. doi: 10.1161/STROKEAHA.107.510768.
- Lyden P, Brott T, Tilley B, Welch KM, Mascha EJ, Levine S, Haley EC, Grotta J, Marler J. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. *Stroke*. 1994:25:2220–2226.
- Josephson SA, Hills NK, Johnston SC. NIH Stroke Scale reliability in ratings from a large sample of clinicians. *Cerebrovasc Dis*. 2006;22:389– 395. doi: 10.1159/000094857.
- Lyden P, Raman R, Liu L, Emr M, Warren M, Marler J. National Institutes of Health Stroke Scale certification is reliable across multiple venues. *Stroke*. 2009;40:2507–2511. doi: 10.1161/STROKEAHA.108.532069.
- 65. Fonarow GC, Saver JL, Smith EE, Broderick JP, Kleindorfer DO, Sacco RL, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Relationship of National Institutes of Health Stroke Scale to 30-day mortality in Medicare beneficiaries with acute ischemic stroke. J Am Heart Assoc. 2012;1:42–50. doi: 10.1161/JAHA.111.000034.
- 66. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. *Lancet*. 2007;369:293–298. doi: 10.1016/S0140-6736(07)60151-2.
- 67. Hwang DY, Silva GS, Furie KL, Greer DM. Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. *J Emerg Med.* 2012;42:559–565. doi: 10.1016/j.jemermed.2011.05.101.
- Brazzelli M, Sandercock PA, Chappell FM, Celani MG, Righetti E, Arestis N, Wardlaw JM, Deeks JJ. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. *Cochrane Database Syst Rev.* 2009:CD007424.
- 69. Wardlaw J, Brazzelli M, Miranda H, Chappell F, McNamee P, Scotland G, Quayyum Z, Martin D, Shuler K, Sandercock P, Dennis M. An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation. *Health Technol Assess.* 2014;18:1–368, v. doi: 10.3310/hta18270.
- Wardlaw JM, Seymour J, Cairns J, Keir S, Lewis S, Sandercock P. Immediate computed tomography scanning of acute stroke is costeffective and improves quality of life. *Stroke*. 2004;35:2477–2483. doi: 10.1161/01.STR.0000143453.78005.44.
- Barber PA, Hill MD, Eliasziw M, Demchuk AM, Pexman JH, Hudon ME, Tomanek A, Frayne R, Buchan AM; ASPECTS Study Group. Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J Neurol Neurosurg Psychiatry. 2005;76:1528–1533. doi: 10.1136/ jnnp.2004.059261.
- Heidenreich JO, Hsu D, Wang G, Jesberger JA, Tarr RW, Zaidat OO, Sunshine JL. Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care. *Acta Radiol.* 2008;49:550–557. doi: 10.1080/02841850801958320.
- 73. Lees KR, Emberson J, Blackwell L, Bluhmki E, Davis SM, Donnan GA, Grotta JC, Kaste M, von Kummer R, Lansberg MG, Lindley RI, Lyden P, Murray GD, Sandercock PA, Toni D, Toyoda K, Wardlaw JM, Whiteley WN, Baigent C, Hacke W, Howard G; on behalf of the Stroke Thrombolysis Trialists' Collaborators Group. Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials. *Stroke*. 2016;47:2373–2379. doi: 10.1161/STROKEAHA.116.013644.

- 74. Aghaebrahim A, Streib C, Rangaraju S, Kenmuir CL, Giurgiutiu DV, Horev A, Saeed Y, Callaway CW, Guyette FX, Martin-Gill C, Pacella C, Ducruet AF, Jankowitz BT, Jovin TG, Jadhav AP. Streamlining door to recanalization processes in endovascular stroke therapy. *J Neurointerv Surg.* 2017;9:340–345. doi: 10.1136/neurintsurg-2016-012324.
- Messe SR, Khatri P, Reeves MJ, Smith EE, Saver JL, Bhatt DL, Grau-Sepulveda MV, Cox M, Peterson ED, Fonarow GC, Schwamm LH. Why are acute ischemic stroke patients not receiving IV tPA? Results from a national registry. *Neurology*. 2016;87:1565–1574.
- Zaidi SF, Shawver J, Espinosa Morales A, Salahuddin H, Tietjen G, Lindstrom D, Parquette B, Adams A, Korsnack A, Jumaa MA. Stroke care: initial data from a county-based bypass protocol for patients with acute stroke. *J Neurointerv Surg.* 2017;9:631–635. doi: 10.1136/ neurintsurg-2016-012476.
- 77. IST-3 Collaborative Group. Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. *Lancet Neurol*. 2015;14:485–496.
- Demchuk AM, Khan F, Hill MD, Barber PA, Silver B, Patel S, Levine SR; NINDS rt-PA Stroke Study Group. Importance of leukoaraiosis on CT for tissue plasminogen activator decision making: evaluation of the NINDS rt-PA Stroke Study. *Cerebrovasc Dis.* 2008;26:120–125. doi: 10.1159/000139658.
- Działowski I, Hill MD, Coutts SB, Demchuk AM, Kent DM, Wunderlich O, von Kummer R. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. *Stroke*. 2006;37:973–978. doi: 10.1161/01.STR.0000206215.62441.56.
- Demchuk AM, Hill MD, Barber PA, Silver B, Patel SC, Levine SR; for the NINDS rtPA Stroke Study Group, NIH. Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA Stroke Study. *Stroke*. 2005;36:2110–2115. doi: 10.1161/01.STR.0000181116.15426.58.
- Patel SC, Levine SR, Tilley BC, Grotta JC, Lu M, Frankel M, Haley EC Jr, Brott TG, Broderick JP, Horowitz S, Lyden PD, Lewandowski CA, Marler JR, Welch KM; National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. JAMA. 2001;286:2830–2838.
- Charidimou A, Pasi M, Fiorelli M, Shams S, von Kummer R, Pantoni L, Rost N. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: a meta-analysis (v1). *Stroke*. 2016;47:2364–2372. doi: 10.1161/STROKEAHA.116.014096.
- Qureshi AI, Ezzeddine MA, Nasar A, Suri MF, Kirmani JF, Janjua N, Divani AA. Is IV tissue plasminogen activator beneficial in patients with hyperdense artery sign? *Neurology*. 2006;66:1171–1174. doi: 10.1212/01.wnl.0000208407.69544.5a.
- 84. Mair G, von Kummer R, Morris Z, von Heijne A, Bradey N, Cala L, Peeters A, Farrall AJ, Adami A, Potter G, Cohen G, Sandercock PA, Lindley RI, Wardlaw JM; IST-3 Collaborative Group. Effect of alteplase on the CT hyperdense artery sign and outcome after ischemic stroke. *Neurology*. 2016;86:118–125. doi: 10.1212/WNL.000000000002236.
- Charidimou A, Shoamanesh A; International META-MICROBLEEDS Initiative. Clinical relevance of microbleeds in acute stroke thrombolysis: comprehensive meta-analysis. *Neurology*. 2016;87:1534–1541. doi: 10.1212/WNL.000000000003207.
- 86. Tsivgoulis G, Zand R, Katsanos AH, Turc G, Nolte CH, Jung S, Cordonnier C, Fiebach JB, Scheitz JF, Klinger-Gratz PP, Oppenheim C, Goyal N, Safouris A, Mattle HP, Alexandrov AW, Schellinger PD, Alexandrov AV. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis. *JAMA Neurol.* 2016;73:675–683. doi: 10.1001/jamaneurol.2016.0292.
- Tissue plasminogen activator for acute ischemic stroke: the National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333:1581–1587.
- Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP; DEFUSE Investigators. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Ann Neurol. 2006;60:508–517. doi: 10.1002/ana.20976.
- Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, Ford I, Muir KW. Alteplase Versus Tenecteplase for Thrombolysis After Ischaemic Stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. *Lancet Neurol*. 2015;14:368–376. doi: 10.1016/ S1474-4422(15)70017-7.

- Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD000213.
- 91. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, O'Brien B, Bladin C, McElduff P, Allen C, Bateman G, Donnan G, Davis S, Levi C. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. *N Engl J Med.* 2012;366:1099–1107. doi: 10.1056/NEJMoa1109842.
- 92. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Söhngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. *Lancet Neurol.* 2009;8:141–150. doi: 10.1016/S1474-4422(08)70267-9.
- 93. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, Chalk JB, Fink JN, Kimber TE, Schultz D, Hand PJ, Frayne J, Hankey G, Muir K, Gerraty R, Tress BM, Desmond PM; EPITHET Investigators. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. *Lancet Neurol*. 2008;7:299–309. doi: 10.1016/S1474-4422(08)70044-9.
- 94. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA, Sachara C, Soehngen M, Warach S, Hacke W; for the DEDAS Investigators. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. *Stroke*. 2006;37:1227–1231. doi: 10.1161/01.STR. 0000217403.66996.6d.
- 95. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S; for the DIAS Study Group. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. *Stroke*. 2005;36:66–73. doi: 10.1161/01.STR.0000149938.08731.2c.
- Ehrlich ME, Turner HL, Currie LJ, Wintermark M, Worrall BB, Southerland AM. Safety of computed tomographic angiography in the evaluation of patients with acute stroke: a single-center experience. *Stroke*. 2016;47:2045–2050. doi: 10.1161/STROKEAHA.116.013973.
- Aulicky P, Mikulík R, Goldemund D, Reif M, Dufek M, Kubelka T. Safety of performing CT angiography in stroke patients treated with intravenous thrombolysis. *J Neurol Neurosurg Psychiatry*. 2010;81:783– 787. doi: 10.1136/jnnp.2009.184002.
- 98. Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, González RG, Koroshetz WJ, Smith WS, Furie KL. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrastinduced nephropathy. *AJNR Am J Neuroradiol*. 2010;31:817–821. doi: 10.3174/ajnr.A1927.
- Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI. Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. *AJNR Am J Neuroradiol.* 2008;29:1826–1830. doi: 10.3174/ajnr.A1257.
- 100. Krol AL, Dzialowski I, Roy J, Puetz V, Subramaniam S, Coutts SB, Demchuk AM. Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. *Stroke*. 2007;38:2364–2366. doi: 10.1161/STROKEAHA.107.482778.
- Josephson SA, Dillon WP, Smith WS. Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging. *Neurology*. 2005;64:1805–1806. doi: 10.1212/01.WNL.0000161845.69114.62.
- 102. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Román L, Serena J, Abilleira S, Ribó M, Millán M, Urra X, Cardona P, López-Cancio E, Tomasello A, Castaño C, Blasco J, Aja L, Dorado L, Quesada H, Rubiera M, Hernandez-Pérez M, Goyal M, Demchuk AM, von Kummer R, Gallofré M, Dávalos A; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke. *N* Engl J Med. 2015;372:2296–2306. doi: 10.1056/NEJMoa1503780.
- 103. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, Jansen O, Jovin TG, Mattle HP, Nogueira RG, Siddiqui AH, Yavagal DR, Baxter BW, Devlin TG, Lopes DK, Reddy VK, du Mesnil de Rochemont R, Singer OC, Jahan R; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. *N Engl J Med.* 2015;372:2285–2295. doi: 10.1056/NEJMoa1415061.
- Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF,

Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. *N Engl J Med.* 2015;372:1019–1030. doi: 10.1056/NEJMoa1414905.

- 105. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, Wu TY, Brooks M, Simpson MA, Miteff F, Levi CR, Krause M, Harrington TJ, Faulder KC, Steinfort BS, Priglinger M, Ang T, Scroop R, Barber PA, McGuinness B, Wijeratne T, Phan TG, Chong W, Chandra RV, Bladin CF, Badve M, Rice H, de Villiers L, Ma H, Desmond PM, Donnan GA, Davis SM; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. *N Engl J Med.* 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792.
- Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, Guillemin F; THRACE Investigators. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. *Lancet Neurol.* 2016;15:1138–1147. doi: 10.1016/S1474-4422(16)30177-6.
- 107. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, van Walderveen MA, Staals J, Hofmeijer J, van Oostayen JA, Lycklama à Nijeholt GJ, Boiten J, Brouwer PA, Emmer BJ, de Bruijn SF, van Dijk LC, Kappelle LJ, Lo RH, van Dijk EJ, de Vries J, de Kort PL, van Rooij WJ, van den Berg JS, van Hasselt BA, Aerden LA, Dallinga RJ, Visser MC, Bot JC, Vroomen PC, Eshghi O, Schreuder TH, Heijboer RJ, Keizer K, Tielbeek AV, den Hertog HM, Gerrits DG, van den Berg-Vos RM, Karas GB, Steyerberg EW, Flach HZ, Marquering HA, Sprengers ME, Jenniskens SF, Beenen LF, van den Berg R, Koudstaal PJ, van Zwam WH, Roos YB, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. *N Engl J Med.* 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
- 108. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, Sila CA, Hassan AE, Millan M, Levy EI, Mitchell P, Chen M, English JD, Shah QA, Silver FL, Pereira VM, Mehta BP, Baxter BW, Abraham MG, Cardona P, Veznedaroglu E, Hellinger FR, Feng L, Kirmani JF, Lopes DK, Jankowitz BT, Frankel MR, Costalat V, Vora NA, Yoo AJ, Malik AM, Furlan AJ, Rubiera M, Aghaebrahim A, Olivot JM, Tekle WG, Shields R, Graves T, Lewis RJ, Smith WS, Liebeskind DS, Saver JL, Jovin TG DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct [published online ahead of print November 11, 2017]. *N Engl J Med.* doi: 10.1056/NEJMoa1706442.
- 109. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart R, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mylnash M, Heit JJ, Zaharchuk G, Kim S, Carrozzella J, Palesch YY, Demchuk AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG; on behalf of the DEFUSE 3 Investigators. Thrombectomy for stroke with perfusion imaging selection at 6–16 hours. *N Engl J Med.* In press.
- 110. Berkhemer OA, Jansen IG, Beumer D, Fransen PS, van den Berg LA, Yoo AJ, Lingsma HF, Sprengers ME, Jenniskens SF, Lycklama Å Nijeholt GJ, van Walderveen MA, van den Berg R, Bot JC, Beenen LF, Boers AM, Slump CH, Roos YB, van Oostenbrugge RJ, Dippel DW, van der Lugt A, van Zwam WH, Marquering HA, Majoie CB; on behalf of the MR CLEAN Investigators. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. *Stroke*. 2016;47:768–776. doi: 10.1161/STROKEAHA.115.011788.
- 111. Menon BK, Qazi E, Nambiar V, Foster LD, Yeatts SD, Liebeskind D, Jovin TG, Goyal M, Hill MD, Tomsick TA, Broderick JP, Demchuk AM; for the Interventional Management of Stroke III Investigators. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III Trial. *Stroke*. 2015;46:1239–1244. doi: 10.1161/STROKEAHA.115.009009.
- 112. Saber H, Silver B, Santillan A, Azarpazhooh MR, Misra V, Behrouz R. Role of emergent chest radiography in evaluation of hyperacute stroke. *Neurology*. 2016;87:782–785. doi: 10.1212/WNL.000000000002964.
- 113. Roffe C, Nevatte T, Sim J, Bishop J, Ives N, Ferdinand P, Gray R; Stroke Oxygen Study Investigators and the Stroke Oxygen Study Collaborative

Group. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: the Stroke Oxygen Study Randomized Clinical Trial. *JAMA*. 2017;318:1125–1135. doi: 10.1001/jama.2017.11463.

- 114. Bennett MH, Weibel S, Wasiak J, Schnabel A, French C, Kranke P. Hyperbaric oxygen therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD004954.
- 115. Heyboer M 3rd, Sharma D, Santiago W, McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. *Adv Wound Care (New Rochelle)*. 2017;6:210–224. doi: 10.1089/wound.2016.0718.
- 116. Heyboer M 3rd, Jennings S, Grant WD, Ojevwe C, Byrne J, Wojcik SM. Seizure incidence by treatment pressure in patients undergoing hyperbaric oxygen therapy. *Undersea Hyperb Med.* 2014;41:379–385.
- 117. Wohlfahrt P, Krajcoviechova A, Jozifova M, Mayer O, Vanek J, Filipovsky J, Cifkova R. Low blood pressure during the acute period of ischemic stroke is associated with decreased survival. *J Hypertens*. 2015;33:339–345. doi: 10.1097/HJH.000000000000414.
- Vemmos KN, Tsivgoulis G, Spengos K, Zakopoulos N, Synetos A, Manios E, Konstantopoulou P, Mavrikakis M. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. J Intern Med. 2004;255:257–265.
- Okumura K, Ohya Y, Maehara A, Wakugami K, Iseki K, Takishita S. Effects of blood pressure levels on case fatality after acute stroke. *J Hypertens*. 2005;23:1217–1223.
- 120. Stead LG, Gilmore RM, Decker WW, Weaver AL, Brown RD Jr. Initial emergency department blood pressure as predictor of survival after acute ischemic stroke. *Neurology*. 2005;65:1179–1183. doi: 10.1212/01. wnl.0000180939.24845.22.
- 121. Castillo J, Leira R, García MM, Serena J, Blanco M, Dávalos A. Blood pressure decrease during the acute phase of ischemic stroke is associated with brain injury and poor stroke outcome. *Stroke*. 2004;35:520–526. doi: 10.1161/01.STR.0000109769.22917.B0.
- Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA; for the IST Collaborative Group. Blood pressure and clinical outcomes in the International Stroke Trial. *Stroke*, 2002;33:1315–1320.
- 123. Manning LS, Mistri AK, Potter J, Rothwell PM, Robinson TG. Shortterm blood pressure variability in acute stroke: post hoc analysis of the Controlling Hypertension and Hypotension Immediately Post Stroke and Continue or Stop Post-Stroke Antihypertensives collaborative study trials. *Stroke*, 2015;46:1518–1524. doi: 10.1161/STROKEAHA. 115.009078.
- Muscari A, Puddu GM, Serafini C, Fabbri E, Vizioli L, Zoli M. Predictors of short-term improvement of ischemic stroke. *Neurol Res.* 2013;35:594– 601. doi: 10.1179/1743132813Y.0000000181.
- 125. Visvanathan A, Dennis M, Whiteley W. Parenteral fluid regimens for improving functional outcome in people with acute stroke. *Cochrane Database Syst Rev.* 2015:CD011138.
- 126. Butcher K, Christensen S, Parsons M, De Silva DA, Ebinger M, Levi C, Jeerakathil T, Campbell BC, Barber PA, Bladin C, Fink J, Tress B, Donnan GA, Davis SM; for the EPITHET Investigators. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. *Stroke*. 2010;41:72–77. doi: 10.1161/STROKEAHA.109.563767.
- 127. Perini F, De Boni A, Marcon M, Bolgan I, Pellizzari M, Dionisio LD. Systolic blood pressure contributes to intracerebral haemorrhage after thrombolysis for ischemic stroke. *J Neurol Sci.* 2010;297:52–54. doi: 10.1016/j.jns.2010.06.025.
- 128. Toni D, Ahmed N, Anzini A, Lorenzano S, Brozman M, Kaste M, Mikulik R, Putaala J, Wahlgren N; SITS Investigators. Intravenous thrombolysis in young stroke patients: results from the SITS-ISTR. *Neurology*. 2012;78:880–887. doi: 10.1212/WNL.0b013e31824d966b.
- 129. Mazya M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, Wahlgren N, Ahmed N; for the SITS Investigators. Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. *Stroke*. 2012;43:1524–1531. doi: 10.1161/STROKEAHA.111.644815.
- 130. Wu W, Huo X, Zhao X, Liao X, Wang C, Pan Y, Wang Y, Wang Y; TIMS-CHINA Investigators. Relationship between blood pressure and outcomes in acute ischemic stroke patients administered lytic medication in the TIMS-China Study. *PLoS One*. 2016;11:e0144260. doi: 10.1371/ journal.pone.0144260.
- 131. Endo K, Kario K, Koga M, Nakagawara J, Shiokawa Y, Yamagami H, Furui E, Kimura K, Hasegawa Y, Okada Y, Okuda S, Namekawa M, Miyagi T, Osaki M, Minematsu K, Toyoda K. Impact of early blood pressure variability on stroke outcomes after thrombolysis: the

SAMURAI rt-PA Registry. Stroke. 2013;44:816–818. doi: 10.1161/ STROKEAHA.112.681007.

- 132. Waltimo T, Haapaniemi E, Surakka IL, Melkas S, Sairanen T, Sibolt G, Tatlisumak T, Strbian D. Post-thrombolytic blood pressure and symptomatic intracerebral hemorrhage. *Eur J Neurol.* 2016;23:1757–1762. doi: 10.1111/ene.13118.
- 133. Liu K, Yan S, Zhang S, Guo Y, Lou M. Systolic blood pressure variability is associated with severe hemorrhagic transformation in the early stage after thrombolysis. *Transl Stroke Res.* 2016;7:186–191. doi: 10.1007/ s12975-016-0458-6.
- 134. Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, Finfer S, Beasley R, Hyam J, Menon D, Rowan K, Myburgh J. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. *Intensive Care Med.* 2015;41:823–832. doi: 10.1007/s00134-015-3676-6.
- 135. Lyden P, Hemmen T, Grotta J, Rapp K, Ernstrom K, Rzesiewicz T, Parker S, Concha M, Hussain S, Agarwal S, Meyer B, Jurf J, Altafullah I, Raman R. Results of the ICTUS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). *Stroke*. 2016;47:2888–2895. doi: 10.1161/ STROKEAHA.116.014200.
- 136. Geurts M, Petersson J, Brizzi M, Olsson-Hau S, Luijckx GJ, Algra A, Dippel DW, Kappelle LJ, van der Worp HB. COOLIST (Cooling for Ischemic Stroke Trial): a multicenter, open, randomized, phase ii, clinical trial. *Stroke*. 2017;48:219–221. doi: 10.1161/STROKEAHA.116.014757.
- 137. Piironen K, Tiainen M, Mustanoja S, Kaukonen KM, Meretoja A, Tatlisumak T, Kaste M. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: a randomized controlled trial. *Stroke*. 2014;45:486–491. doi: 10.1161/STROKEAHA.113.003180.
- 138. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD; for the ICTuS-L Investigators. Intravenous Thrombolysis Plus Hypothermia for Acute Treatment of Ischemic Stroke (ICTuS-L): final results. *Stroke*. 2010;41:2265–2270. doi: 10.1161/STROKEAHA.110.592295.
- 139. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S; ATLANTIS Trials Investigators; ECASS Trials Investigators; NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. *Lancet.* 2004;363:768–774. doi: 10.1016/S0140-6736(04)15692-4.
- 140. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. *Lancet*. 2012;379:2364–2372. doi: 10.1016/S0140-6736(12)60738-7.
- 141. Wahlgren N, Ahmed N, Dávalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, Lees KR, Roine RO, Soinne L, Toni D, Vanhooren G; SITS-MOST investigators. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. *Lancet.* 2007;369:275–282. doi: 10.1016/S0140-6736(07)60149-4.
- 142. IST-3 Collaborative Group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, Innes K, Venables G, Czlonkowska A, Kobayashi A, Ricci S, Murray V, Berge E, Slot KB, Hankey GJ, Correia M, Peeters A, Matz K, Lyrer P, Gubitz G, Phillips SJ, Arauz A. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the Third International Stroke Trial [IST-3]): a randomised controlled trial. *Lancet*. 2012;379:2352–2363.
- 143. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, Broderick JP, Chen X, Chen G, Sharma VK, Kim JS, Thang NH, Cao Y, Parsons MW, Levi C, Huang Y, Olavarría VV, Demchuk AM, Bath PM, Donnan GA, Martins S, Pontes-Neto OM, Silva F, Ricci S, Roffe C, Pandian J, Billot L, Woodward M, Li Q, Wang X, Wang J, Chalmers J; ENCHANTED Investigators and Coordinators. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. *N Engl J Med.* 2016;374:2313–2323. doi: 10.1056/NEJMoa1515510.
- 144. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. *N Engl J Med.* 2008;359:1317–1329. doi: 10.1056/NEJMoa0804656.
- 145. Bluhmki E, Chamorro A, Dávalos A, Machnig T, Sauce C, Wahlgren N, Wardlaw J, Hacke W. Stroke treatment with alteplase given 3.0-4.5 h

after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomised controlled trial. *Lancet Neurol*. 2009;8:1095–1102. doi: 10.1016/S1474-4422(09)70264-9.

- 146. Ahmed N, Wahlgren N, Grond M, Hennerici M, Lees KR, Mikulik R, Parsons M, Roine RO, Toni D, Ringleb P; SITS Investigators. Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: an updated analysis from SITS-ISTR. *Lancet Neurol*. 2010;9:866–874. doi: 10.1016/S1474-4422(10)70165-4.
- 147. Romano JG, Smith EE, Liang L, Gardener H, Camp S, Shuey L, Cook A, Campo-Bustillo I, Khatri P, Bhatt DL, Fonarow GC, Sacco RL, Schwamm LH. Outcomes in mild acute ischemic stroke treated with intravenous thrombolysis: a retrospective analysis of the Get With the Guidelines-Stroke registry. *JAMA Neurol.* 2015;72:423–431. doi: 10.1001/jamaneurol.2014.4354.
- 148. Adams RJ, Cox M, Ozark SD, Kanter J, Schulte PJ, Xian Y, Fonarow GC, Smith EE, Schwamm LH. Coexistent sickle cell disease has no impact on the safety or outcome of lytic therapy in acute ischemic stroke: findings from Get With The Guidelines–Stroke. *Stroke*. 2017;48:686–691. doi: 10.1161/STROKEAHA.116.015412.
- 149. Sloan MA, Price TR, Petito CK, Randall AM, Solomon RE, Terrin ML, Gore J, Collen D, Kleiman N, Feit F. Clinical features and pathogenesis of intracerebral hemorrhage after rt-PA and heparin therapy for acute myocardial infarction: the Thrombolysis in Myocardial Infarction (TIMI) II Pilot and Randomized Clinical Trial combined experience. *Neurology*. 1995;45:649–658.
- 150. Mahaffey KW, Granger CB, Sloan MA, Green CL, Gore JM, Weaver WD, White HD, Simoons ML, Barbash GI, Topol EJ, Califf RM. Neurosurgical evacuation of intracranial hemorrhage after thrombolytic therapy for acute myocardial infarction: experience from the GUSTO-I trial: Global Utilization of Streptokinase and Tissue-Plasminogen Activator (tPA) for Occluded Coronary Arteries. Am Heart J. 1999;138(pt 1):493–499.
- 151. Goldstein JN, Marrero M, Masrur S, Pervez M, Barrocas AM, Abdullah A, Oleinik A, Rosand J, Smith EE, Dzik WH, Schwamm LH. Management of thrombolysis-associated symptomatic intracerebral hemorrhage. *Arch Neurol.* 2010;67:965–969. doi: 10.1001/archneurol.2010.175.
- French KF, White J, Hoesch RE. Treatment of intracerebral hemorrhage with tranexamic acid after thrombolysis with tissue plasminogen activator. *Neurocrit Care*. 2012;17:107–111. doi: 10.1007/s12028-012-9681-5.
- 153. Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. *JAMA Neurol.* 2014;71:1181–1185. doi: 10.1001/ jamaneurol.2014.1210.
- 154. Yaghi S, Haggiagi A, Sherzai A, Marshall RS, Agarwal S. Use of recombinant factor VIIa in symptomatic intracerebral hemorrhage following intravenous thrombolysis. *Clin Pract.* 2015;5:756. doi: 10.4081/ cp.2015.756.
- 155. Yaghi S, Boehme AK, Dibu J, Leon Guerrero CR, Ali S, Martin-Schild S, Sands KA, Noorian AR, Blum CA, Chaudhary S, Schwamm LH, Liebeskind DS, Marshall RS, Willey JZ. Treatment and outcome of thrombolysis-related hemorrhage: a multicenter retrospective study. *JAMA Neurol.* 2015;72:1451–1457. doi: 10.1001/jamaneurol.2015.2371.
- 156. Stone JA, Willey JZ, Keyrouz S, Butera J, McTaggart RA, Cutting S, Silver B, Thompson B, Furie KL, Yaghi S. Therapies for hemorrhagic transformation in acute ischemic stroke. *Curr Treat Options Neurol*. 2017;19:1. doi: 10.1007/s11940-017-0438-5.
- 157. Frontera JA, Lewin JJ 3rd, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, del Zoppo GJ, Kumar MA, Peerschke EI, Stiefel MF, Teitelbaum JS, Wartenberg KE, Zerfoss CL. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the Neurocritical Care Society and Society of Critical Care Medicine. *Neurocrit Care*. 2016;24:6–46. doi: 10.1007/ s12028-015-0222-x.
- Foster-Goldman A, McCarthy D. Angioedema from recombinant TPA administration: case report and pathophysiology review. *Am J Ther.* 2013;20:691–693. doi: 10.1097/MJT.0b013e3182799083.
- Gorski EM, Schmidt MJ. Orolingual angioedema with alteplase administration for treatment of acute ischemic stroke. *J Emerg Med.* 2013;45:e25–e26. doi: 10.1016/j.jemermed.2013.02.004.
- Lewis LM. Angioedema: etiology, pathophysiology, current and emerging therapies. J Emerg Med. 2013;45:789–796. doi: 10.1016/j. jemermed.2013.03.045.
- 161. Lin SY, Tang SC, Tsai LK, Yeh SJ, Hsiao YJ, Chen YW, Chen KH, Yip BS, Shen LJ, Wu FL, Jeng JS. Orolingual angioedema after alteplase

therapy of acute ischaemic stroke: incidence and risk of prior angiotensin-converting enzyme inhibitor use. *Eur J Neurol*. 2014;21:1285–1291. doi: 10.1111/ene.12472.

- 162. Correia AS, Matias G, Calado S, Lourenço A, Viana-Baptista M. Orolingual angiodema associated with alteplase treatment of acute stroke: a reappraisal. *J Stroke Cerebrovasc Dis.* 2015;24:31–40. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.045.
- O'Carroll CB, Aguilar MI. Management of postthrombolysis hemorrhagic and orolingual angioedema complications. *Neurohospitalist*. 2015;5:133–141. doi: 10.1177/1941874415587680.
- Myslimi F, Caparros F, Dequatre-Ponchelle N, Moulin S, Gautier S, Girardie P, Cordonnier C, Bordet R, Leys D. Orolingual angioedema during or after thrombolysis for cerebral ischemia. *Stroke*. 2016;47:1825– 1830. doi: 10.1161/STROKEAHA.116.013334.
- 165. Pahs L, Droege C, Kneale H, Pancioli A. A novel approach to the treatment of orolingual angioedema after tissue plasminogen activator administration. *Ann Emerg Med.* 2016;68:345–348. doi: 10.1016/j. annemergmed.2016.02.019.
- 166. Jeong HG, Kim BJ, Yang MH, Han MK, Bae HJ, Lee SH. Stroke outcomes with use of antithrombotics within 24 hours after recanalization treatment. *Neurology*. 2016;87:996–1002. doi: 10.1212/WNL. 000000000003083.
- 167. von Kummer R, Mori E, Truelsen T, Jensen JS, Grønning BA, Fiebach JB, Lovblad KO, Pedraza S, Romero JM, Chabriat H, Chang KC, Dávalos A, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A, Albers GW; for the DIAS-4 Investigators. Desmoteplase 3 to 9 hours after major artery occlusion stroke: the DIAS-4 Trial (Efficacy and Safety Study of Desmoteplase to Treat Acute Ischemic Stroke). *Stroke*. 2016;47:2880–2887. doi: 10.1161/STROKEAHA.116.013715.
- 168. Albers GW, von Kummer R, Truelsen T, Jensen JK, Ravn GM, Grønning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A; DIAS-3 Investigators. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. *Lancet Neurol.* 2015;14:575–584. doi: 10.1016/S1474-4422(15)00047-2.
- 169. Haley EC Jr, Thompson JL, Grotta JC, Lyden PD, Hemmen TG, Brown DL, Fanale C, Libman R, Kwiatkowski TG, Llinas RH, Levine SR, Johnston KC, Buchsbaum R, Levy G, Levin B; for the Tenecteplase in Stroke Investigators. Phase IIB/III trial of tenecteplase in acute ischemic stroke: results of a prematurely terminated randomized clinical trial. *Stroke*. 2010;41:707–711. doi: 10.1161/STROKEAHA. 109.572040.
- 170. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, Thommessen B, Amthor KF, Ihle-Hansen H, Kurz M, Tobro H, Kaur K, Stankiewicz M, Carlsson M, Morsund Å, Idicula T, Aamodt AH, Lund C, Næss H, Waje-Andreassen U, Thomassen L. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. *Lancet Neurol*. 2017;16:781–788. doi: 10.1016/S1474-4422(17)30253-3.
- 171. Nacu A, Kvistad CE, Naess H, Øygarden H, Logallo N, Assmus J, Waje-Andreassen U, Kurz KD, Neckelmann G, Thomassen L. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. *Stroke*. 2017;48:335–341. doi: 10.1161/ STROKEAHA.116.014644.
- 172. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *Lancet*. 2016;387:1723–1731. doi: 10.1016/ S0140-6736(16)00163-X.
- 173. Campbell BC, Hill MD, Rubiera M, Menon BK, Demchuk A, Donnan GA, Roy D, Thornton J, Dorado L, Bonafe A, Levy EI, Diener HC, Hernández-Pérez M, Pereira VM, Blasco J, Quesada H, Rempel J, Jahan R, Davis SM, Stouch BC, Mitchell PJ, Jovin TG, Saver JL, Goyal M. Safety and efficacy of solitaire stent thrombectomy: individual patient data meta-analysis of randomized trials. *Stroke*. 2016;47:798–806. doi: 10.1161/STROKEAHA.115.012360.
- 174. Bush CK, Kurimella D, Cross LJ, Conner KR, Martin-Schild S, He J, Li C, Chen J, Kelly T. Endovascular treatment with stent-retriever devices

for acute ischemic stroke: a meta-analysis of randomized controlled trials. *PLoS One*. 2016;11:e0147287. doi: 10.1371/journal.pone.0147287.

- 175. Lemmens R, Hamilton SA, Liebeskind DS, Tomsick TA, Demchuk AM, Nogueira RG, Marks MP, Jahan R, Gralla J, Yoo AJ, Yeatts SD, Palesch YY, Saver JL, Pereira VM, Broderick JP, Albers GW, Lansberg MG; DEFUSE 2, IMS III, STAR, and SWIFT Trialists; DEFUSE 2 IMS III STAR and SWIFT Trialists. Effect of endovascular reperfusion in relation to site of arterial occlusion. *Neurology*. 2016;86:762–770. doi: 10.1212/WNL.00000000002399.
- 176. Yoo AJ, Simonsen CZ, Prabhakaran S, Chaudhry ZA, Issa MA, Fugate JE, Linfante I, Liebeskind DS, Khatri P, Jovin TG, Kallmes DF, Dabus G, Zaidat OO; for the Cerebral Angiographic Revascularization Grading Collaborators. Refining angiographic biomarkers of revascularization: improving outcome prediction after intra-arterial therapy. *Stroke*. 2013;44:2509–2512. doi: 10.1161/STROKEAHA.113.001990.
- 177. Marks MP, Lansberg MG, Mlynash M, Kemp S, McTaggart R, Zaharchuk G, Bammer R, Albers GW; DEFUSE 2 Investigators. Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome. *J Neurointerv Surg.* 2014;6:724–728. doi: 10.1136/neurintsurg-2013-010973.
- 178. Lapergue B, Blanc R, Gory B, Labreuche J, Duhamel A, Marnat G, Saleme S, Costalat V, Bracard S, Desal H, Mazighi M, Consoli A, Piotin M; ASTER Trial Investigators. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. *JAMA*. 2017;318:443–452. doi: 10.1001/jama.2017.9644.
- 179. Dippel DW, Majoie CB, Roos YB, van der Lugt A, van Oostenbrugge RJ, van Zwam WH, Lingsma HF, Koudstaal PJ, Treurniet KM, van den Berg LA, Beumer D, Fransen PS, Berkhemer OA; for the MR CLEAN Investigators. Influence of device choice on the effect of intra-arterial treatment for acute ischemic stroke in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands). *Stroke*. 2016;47:2574–2581. doi: 10.1161/STROKEAHA.116.013929.
- 180. Berkhemer OA, van den Berg LA, Fransen PS, Beumer D, Yoo AJ, Lingsma HF, Schonewille WJ, van den Berg R, Wermer MJ, Boiten J, Lycklama À Nijeholt GJ, Nederkoorn PJ, Hollmann MW, van Zwam WH, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW, Roos YB; MR CLEAN Investigators. The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN. *Neurology*. 2016;87:656–664. doi: 10.1212/WNL.00000000002976.
- 181. Löwhagen Hendén P, Rentzos A, Karlsson JE, Rosengren L, Leiram B, Sundeman H, Dunker D, Schnabel K, Wikholm G, Hellström M, Ricksten SE. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (Anesthesia During Stroke). *Stroke*. 2017;48:1601–1607. doi: 10.1161/STROKEAHA.117.016554.
- 182. Schönenberger S, Uhlmann L, Hacke W, Schieber S, Mundiyanapurath S, Purrucker JC, Nagel S, Klose C, Pfaff J, Bendszus M, Ringleb PA, Kieser M, Möhlenbruch MA, Bösel J. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy: a randomized clinical trial. *JAMA*. 2016;316:1986–1996. doi: 10.1001/jama.2016.16623.
- 183. Jovin TG, Saver JL, Ribo M, Pereira V, Furlan A, Bonafe A, Baxter B, Gupta R, Lopes D, Jansen O, Smith W, Gress D, Hetts S, Lewis RJ, Shields R, Berry SM, Graves TL, Malisch T, Rai A, Sheth KN, Liebeskind DS, Nogueira RG. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with Trevo (DAWN) trial methods. *Int J Stroke*. 2017;12:641–652. doi: 10.1177/1747493017710341.
- 184. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke: International Stroke Trial Collaborative Group. *Lancet*. 1997;349:1569–1581.
- 185. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke: CAST (Chinese Acute Stroke Trial) Collaborative Group. *Lancet*. 1997;349:1641–1649.
- Sandercock PA, Counsell C, Tseng MC, Cecconi E. Oral antiplatelet therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD000029.
- 187. Siebler M, Hennerici MG, Schneider D, von Reutern GM, Seitz RJ, Röther J, Witte OW, Hamann G, Junghans U, Villringer A, Fiebach JB.

Safety of Tirofiban in acute Ischemic Stroke: the SaTIS trial. *Stroke*. 2011;42:2388–2392. doi: 10.1161/STROKEAHA.110.599662.

- 188. Pancioli AM, Broderick J, Brott T, Tomsick T, Khoury J, Bean J, del Zoppo G, Kleindorfer D, Woo D, Khatri P, Castaldo J, Frey J, Gebel J Jr, Kasner S, Kidwell C, Kwiatkowski T, Libman R, Mackenzie R, Scott P, Starkman S, Thurman RJ; for the CLEAR Trial Investigators. The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: the CLEAR stroke trial. *Stroke*. 2008;39:3268–3276. doi: 10.1161/STROKEAHA.108.517656.
- 189. Adeoye O, Sucharew H, Khoury J, Tomsick T, Khatri P, Palesch Y, Schmit PA, Pancioli AM, Broderick JP; for the CLEAR-ER, IMS III, and ALIAS Part 2 Investigators. Recombinant tissue-type plasminogen activator plus eptifibatide versus recombinant tissue-type plasminogen activator alone in acute ischemic stroke: propensity score-matched post hoc analysis. *Stroke*. 2015;46:461–464. doi: 10.1161/STROKEAHA.114.006743.
- 190. Adeoye O, Sucharew H, Khoury J, Vagal A, Schmit PA, Ewing I, Levine SR, Demel S, Eckerle B, Katz B, Kleindorfer D, Stettler B, Woo D, Khatri P, Broderick JP, Pancioli AM. Combined approach to lysis utilizing ep-tifibatide and recombinant tissue-type plasminogen activator in acute ischemic stroke-full dose regimen stroke trial. *Stroke*. 2015;46:2529–2533. doi: 10.1161/STROKEAHA.115.010260.
- 191. Ciccone A, Motto C, Abraha I, Cozzolino F, Santilli I. Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD005208.
- 192. Adams HP Jr, Effron MB, Torner J, Dávalos A, Frayne J, Teal P, Leclerc J, Oemar B, Padgett L, Barnathan ES, Hacke W; for the AbESTT-II Investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). *Stroke.* 2008;39:87–99. doi: 10.1161/STROKEAHA.106.476648.
- 193. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, Wang C, Li H, Meng X, Cui L, Jia J, Dong Q, Xu A, Zeng J, Li Y, Wang Z, Xia H, Johnston SC; CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. *N Engl J Med*. 2013;369:11–19. doi: 10.1056/NEJMoa1215340.
- 194. Wang Y, Pan Y, Zhao X, Li H, Wang D, Johnston SC, Liu L, Meng X, Wang A, Wang C, Wang Y; on behalf of the CHANCE Investigators. Clopidogrel With Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) trial: one-year outcomes. *Circulation*. 2015;132:40– 46. doi: 10.1161/CIRCULATIONAHA.114.014791.
- 195. Johnston SC, Easton JD, Farrant M, Barsan W, Battenhouse H, Conwit R, Dillon C, Elm J, Lindblad A, Morgenstern L, Poisson SN, Palesch Y. Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT) trial: rationale and design. *Int J Stroke*, 2013;8:479–483. doi: 10.1111/ijs.12129.
- Johnston SC, Amarenco P. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N Engl J Med. 2016;375:1395. doi: 10.1056/ NEJMc1610106.
- 197. Whiteley WN, Adams HP Jr, Bath PM, Berge E, Sandset PM, Dennis M, Murray GD, Wong KS, Sandercock PA. Targeted use of heparin, heparinoids, or low-molecular-weight heparin to improve outcome after acute ischaemic stroke: an individual patient data meta-analysis of randomised controlled trials. *Lancet Neurol.* 2013;12:539–545. doi: 10.1016/S1474-4422(13)70079-6.
- 198. Sandercock PA, Counsell C, Kane EJ. Anticoagulants for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2015:CD000024.
- 199. Yi X, Lin J, Wang C, Zhang B, Chi W. Low-molecular-weight heparin is more effective than aspirin in preventing early neurologic deterioration and improving six-month outcome. J Stroke Cerebrovasc Dis. 2014;23:1537–1544. doi: 10.1016/j.jstrokecerebrovasdis.2013.12.036.
- 200. Wada T, Yasunaga H, Horiguchi H, Matsubara T, Fushimi K, Nakajima S, Yahagi N. Outcomes of argatroban treatment in patients with atherothrombotic stroke: observational nationwide study in Japan. *Stroke*. 2016;47:471–476. doi: 10.1161/STROKEAHA.115.011250.
- 201. Kate M, Gioia L, Buck B, Sivakumar L, Jeerakathil T, Shuaib A, Butcher K. Dabigatran therapy in acute ischemic stroke patients without atrial fibrillation. *Stroke*. 2015;46:2685–2687. doi: 10.1161/ STROKEAHA.115.010383.
- 202. Paciaroni M, Agnelli G, Falocci N, Caso V, Becattini C, Marcheselli S, Rueckert C, Pezzini A, Poli L, Padovani A, Csiba L, Szabó L, Sohn SI, Tassinari T, Abdul-Rahim AH, Michel P, Cordier M, Vanacker P, Remillard S, Alberti A, Venti M, Scoditti U, Denti L, Orlandi G, Chiti A, Gialdini G, Bovi P, Carletti M, Rigatelli A, Putaala J, Tatlisumak T, Masotti L, Lorenzini G, Tassi R, Guideri F, Martini G, Tsiygoulis G, Vadikolias K, Liantinioti C, Corea F, Del Sette M, Ageno W, De

Lodovici ML, Bono G, Baldi A, D'Anna S, Sacco S, Carolei A, Tiseo C, Acciarresi M, D'Amore C, Imberti D, Zabzuni D, Doronin B, Volodina V, Consoli D, Galati F, Pieroni A, Toni D, Monaco S, Baronello MM, Barlinn K, Pallesen LP, Kepplinger J, Bodechtel U, Gerber J, Deleu D, Melikyan G, Ibrahim F, Akhtar N, Mosconi MG, Bubba V, Silvestri I, Lees KR. Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF study. *Stroke*. 2015;46:2175–2182. doi: 10.1161/ STROKEAHA.115.008891.

- 203. Mokin M, Kass-Hout T, Kass-Hout O, Radovic V, Siddiqui AH, Levy EI, Snyder KV. Intravenous heparin for the treatment of intraluminal thrombus in patients with acute ischemic stroke: a case series. *J Neurointerv Surg.* 2013;5:144–150. doi: 10.1136/neurintsurg-2011-010134.
- 204. Vellimana AK, Kadkhodayan Y, Rich KM, Cross DT 3rd, Moran CJ, Zazulia AR, Lee JM, Chicoine MR, Dacey RG Jr, Derdeyn CP, Zipfel GJ. Symptomatic patients with intraluminal carotid artery thrombus: outcome with a strategy of initial anticoagulation. *J Neurosurg*. 2013;118:34–41. doi: 10.3171/2012.9.JNS12406.
- 205. Barreto AD, Alexandrov AV, Lyden P, Lee J, Martin-Schild S, Shen L, Wu TC, Sisson A, Pandurengan R, Chen Z, Rahbar MH, Balucani C, Barlinn K, Sugg RM, Garami Z, Tsivgoulis G, Gonzales NR, Savitz SI, Mikulik R, Demchuk AM, Grotta JC. The Argatroban and Tissue-Type Plasminogen Activator Stroke Study: final results of a pilot safety study. *Stroke*. 2012;43:770–775. doi: 10.1161/STROKEAHA. 111.625574.
- 206. Barreto AD, Ford GA, Shen L, Pedroza C, Tyson J, Cai C, Rahbar MH, Grotta JC; on behalf of the ARTSS-2 Investigators. Randomized, multicenter trial of ARTSS-2 (Argatroban With Recombinant Tissue Plasminogen Activator for Acute Stroke). *Stroke*. 2017;48:1608–1616. doi: 10.1161/STROKEAHA.117.016720.
- 207. Gioia LC, Kate M, Sivakumar L, Hussain D, Kalashyan H, Buck B, Bussiere M, Jeerakathil T, Shuaib A, Emery D, Butcher K. Early rivaroxaban use after cardioembolic stroke may not result in hemorrhagic transformation: a prospective magnetic resonance imaging study. *Stroke*. 2016;47:1917–1919. doi: 10.1161/STROKEAHA.116.013491.
- Chang TS, Jensen MB. Haemodilution for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:CD000103.
- 209. Ginsberg MD, Palesch YY, Hill MD, Martin RH, Moy CS, Barsan WG, Waldman BD, Tamariz D, Ryckborst KJ; ALIAS and Neurological Emergencies Treatment Trials (NETT) Investigators. High-dose albumin treatment for acute ischaemic stroke (ALIAS) part 2: a randomised, double-blind, phase 3, placebo-controlled trial. *Lancet Neurol*. 2013;12:1049–1058. doi: 10.1016/S1474-4422(13)70223-0.
- 210. Martin RH, Yeatts SD, Hill MD, Moy CS, Ginsberg MD, Palesch YY; for the ALIAS Parts 1 and 2 and NETT Investigators. ALIAS (Albumin in Acute Ischemic Stroke) trials: analysis of the combined data from parts 1 and 2. *Stroke*. 2016;47:2355–2359. doi: 10.1161/ STROKEAHA.116.012825.
- 211. Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. *Ann Med.* 2010;42:576–586. doi: 10.3109/07853890.2010.532811.
- 212. Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. *Curr Cardiol Rep.* 2010;12:29–33. doi: 10.1007/s11886-009-0071-3.
- 213. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, Kasner S, Lew R, Nash M, Perez J, Rymer M, Schellinger P, Schneider D, Schwab S, Veltkamp R, Walker M, Streeter J; for the NeuroThera Effectiveness and Safety Trial-2 Investigators. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. *Stroke*. 2009;40:1359–1364. doi: 10.1161/ STROKEAHA.109.547547.
- 214. Hacke W, Schelinger PD, Albers GW, Bornstein NM, Dahlof BS, Kasner SE, Howard G, Shuaib A, Richieri SP, Dilly S, Zivin J. Transcranial laser therapy (TLT) for acute ischemic stroke: results of NEST 3, a pivotal phase III randomized clinical trial (RCT). *Cerebrovasc Dis.* 2013;35:191.
- 215. Stead LG, Gilmore RM, Vedula KC, Weaver AL, Decker WW, Brown RD Jr. Impact of acute blood pressure variability on ischemic stroke outcome. *Neurology*. 2006;66:1878–1881. doi: 10.1212/01. wnl.0000219628.78513.b5.
- 216. Kaste M, Fogelholm R, Erilä T, Palomäki H, Murros K, Rissanen A, Sarna S. A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke. *Stroke*. 1994;25:1348–1353.

- 217. Wahlgren NG, MacMahon DG, De Keyser J, Indredavik B, Ryman T. The Intravenous Nimodipine West European Trial (INWEST) of nimodipine in the treatment of acute ischemic stroke. *Cerebrovasc Dis.* 1994;4:204–210.
- Horn J, de Haan RJ, Vermeulen M, Limburg M. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebo-controlled trial. *Stroke*. 2001;32:461–465.
- 219. Schrader J, Lüders S, Kulschewski A, Berger J, Zidek W, Treib J, Einhäupl K, Diener HC, Dominiak P; on behalf of the Acute Candesartan Cilexetil Therapy in Stroke Survivors Study Group. The ACCESS Study: evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors. *Stroke*. 2003;34:1699–1703. doi: 10.1161/01.STR.0000075777.18006.89.
- 220. Eveson DJ, Robinson TG, Potter JF. Lisinopril for the treatment of hypertension within the first 24 hours of acute ischemic stroke and follow-up. *Am J Hypertens*. 2007;20:270–277. doi: 10.1016/j. amjhyper.2006.08.005.
- 221. Bath PM, Martin RH, Palesch Y, Cotton D, Yusuf S, Sacco R, Diener HC, Toni D, Estol C, Roberts R; for the PRoFESS Study Group. Effect of telmisartan on functional outcome, recurrence, and blood pressure in patients with acute mild ischemic stroke: a PRoFESS subgroup analysis. *Stroke*. 2009;40:3541–3546. doi: 10.1161/STROKEAHA.109.555623.
- 222. Potter JF, Robinson TG, Ford GA, Mistri A, James M, Chernova J, Jagger C. Controlling Hypertension and Hypotension Immediately Post-Stroke (CHHIPS): a randomised, placebo-controlled, double-blind pilot trial. *Lancet Neurol.* 2009;8:48–56. doi: 10.1016/S1474-4422(08)70263-1.
- 223. Robinson TG, Potter JF, Ford GA, Bulpitt CJ, Chernova J, Jagger C, James MA, Knight J, Markus HS, Mistri AK, Poulter NR; COSSACS Investigators. Effects of antihypertensive treatment after acute stroke in the Continue or Stop Post-Stroke Antihypertensives Collaborative Study (COSSACS): a prospective, randomised, open, blinded-endpoint trial. *Lancet Neurol*. 2010;9:767–775. doi: 10.1016/S1474-4422(10)70163-0.
- 224. Sandset EC, Bath PM, Boysen G, Jatuzis D, Körv J, Lüders S, Murray GD, Richter PS, Roine RO, Terént A, Thijs V, Berge E; SCAST Study Group. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. *Lancet*. 2011;377:741–750. doi: 10.1016/S0140-6736(11)60104-9.
- 225. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, Tong W, Liu C, Xu T, Ju Z, Peng Y, Peng H, Li Q, Geng D, Zhang J, Li D, Zhang F, Guo L, Sun Y, Wang X, Cui Y, Li Y, Ma D, Yang G, Gao Y, Yuan X, Bazzano LA, Chen J; CATIS Investigators. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. *JAMA*. 2014;311:479–489. doi: 10.1001/jama.2013.282543.
- Bath PM, Krishnan K. Interventions for deliberately altering blood pressure in acute stroke. *Cochrane Database Syst Rev.* 2014:CD000039.
- 227. Oh MS, Yu KH, Hong KS, Kang DW, Park JM, Bae HJ, Koo J, Lee J, Lee BC; Valsartan Efficacy oN modesT blood pressUre REduction in acute ischemic stroke (VENTURE) Study Group. Modest blood pressure reduction with valsartan in acute ischemic stroke: a prospective, randomized, open-label, blinded-end-point trial. *Int J Stroke*. 2015;10:745–751. doi: 10.1111/ijs.12446.
- 228. Enos Trial Investigators, Bath PM, Woodhouse L, Scutt P, Krishnan K, Wardlaw JM, Bereczki D, Sprigg N, Berge E, Beridze M, Caso V, Chen C, Christensen H, Collins R, El Etribi A, Laska AC, Lees KR, Ozturk S, Phillips S, Pocock S, de Silva HA, Szatmari S, Utton S. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. *Lancet*. 2015;385:617–28.
- 229. Lee M, Ovbiagele B, Hong KS, Wu YL, Lee JE, Rao NM, Feng W, Saver JL. Effect of blood pressure lowering in early ischemic stroke: meta-analysis. *Stroke*. 2015;46:1883–1889. doi: 10.1161/STROKEAHA.115.009552.
- 230. Woodhouse L, Scutt P, Krishnan K, Berge E, Gommans J, Ntaios G, Wardlaw J, Sprigg N, Bath PM; on behalf of the ENOS Investigators. Effect of hyperacute administration (within 6 hours) of transdermal glyceryl trinitrate, a nitric oxide donor, on outcome after stroke: subgroup analysis of the Efficacy of Nitric Oxide in Stroke (ENOS) Trial. *Stroke*. 2015;46:3194–3201. doi: 10.1161/STROKEAHA.115.009647.
- 231. Rai N, Prasad K, Bhatia R, Vibha D, Singh MB, Rai VK, Kumar A. Development and implementation of acute stroke care pathway in a tertiary care hospital in India: a cluster-randomized study. *Neurol India*. 2016;64(suppl):S39–S45. doi: 10.4103/0028-3886.178038.
- 232. Middleton S, McElduff P, Ward J, Grimshaw JM, Dale S, D'Este C, Drury P, Griffiths R, Cheung NW, Quinn C, Evans M, Cadilhac D, Levi C; QASC Trialists Group. Implementation of evidence-based treatment

protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute stroke (QASC): a cluster randomised controlled trial. *Lancet*. 2011;378:1699–1706. doi: 10.1016/S0140-6736(11)61485-2.

- Miles A, Zeng IS, McLauchlan H, Huckabee ML. Cough reflex testing in dysphagia following stroke: a randomized controlled trial. *J Clin Med Res.* 2013;5:222–233. doi: 10.4021/jocmr1340w.
- 234. Joundi RA, Martino R, Saposnik G, Giannakeas V, Fang J, Kapral MK. Predictors and outcomes of dysphagia screening after acute ischemic stroke. *Stroke*. 2017;48:900–906. doi: 10.1161/ STROKEAHA.116.015332.
- 235. Dennis M, Lewis S, Cranswick G, Forbes J; FOOD Trial Collaboration. FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke. *Health Technol Assess*. 2006;10:iii–iv, ix.
- Geeganage C, Beavan J, Ellender S, Bath PM. Interventions for dysphagia and nutritional support in acute and subacute stroke. *Cochrane Database Syst Rev.* 2012;10:CD000323. doi: 10.1002/14651858.CD000323.pub2.
- 237. Sørensen RT, Rasmussen RS, Overgaard K, Lerche A, Johansen AM, Lindhardt T. Dysphagia screening and intensified oral hygiene reduce pneumonia after stroke. *J Neurosci Nurs.* 2013;45:139–146. doi: 10.1097/JNN.0b013e31828a412c.
- Brady M, Furlanetto D, Hunter RV, Lewis S, Milne V. Staff-led interventions for improving oral hygiene in patients following stroke. *Cochrane Database Syst Rev.* 2006:CD003864.
- Wagner C, Marchina S, Deveau JA, Frayne C, Sulmonte K, Kumar S. Risk of stroke-associated pneumonia and oral hygiene. *Cerebrovasc Dis*. 2016;41:35–39. doi: 10.1159/000440733.
- Dennis M, Caso V, Kappelle LJ, Pavlovic A, Sandercock P. European Stroke Organisation (ESO) guidelines for prophylaxis for venous thromboembolism in immobile patients with acute ischaemic stroke. *Eur Stroke J.* 2016;1:6–19.
- Meader N, Moe-Byrne T, Llewellyn A, Mitchell AJ. Screening for poststroke major depression: a meta-analysis of diagnostic validity studies. J Neurol Neurosurg Psychiatry. 2014;85:198–206. doi: 10.1136/ jnnp-2012-304194.
- 242. Towfighi A, Ovbiagele B, EJ Husseim N, Hackett ML, Jorge RE, Kissela BM, Mitchell PH, Skolarus LE, Whooley MA, Williams LS; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research. Poststroke depression: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48:e30–e43. doi: 10.1161/STR.000000000000113.
- AVERT Trial Collaboration Group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. *Lancet*. 2015;386:46–55.
- 244. Raco A, Caroli E, Isidori A, Salvati M. Management of acute cerebellar infarction: one institution's experience. *Neurosurgery*. 2003;53:1061–1605.
- Agarwalla PK, Stapleton CJ, Ogilvy CS. Craniectomy in acute ischemic stroke. *Neurosurgery*. 2014;74(suppl 1):S151–S162. doi: 10.1227/ NEU.00000000000226.
- 246. Mostofi K. Neurosurgical management of massive cerebellar infarct outcome in 53 patients. *Surg Neurol Int.* 2013;4:28. doi: 10.4103/2152-7806.107906.
- 247. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, Amelink GJ, Schmiedeck P, Schwab S, Rothwell PM, Bousser MG, van der Worp HB, Hacke W; DECIMAL, DESTINY, and HAMLET Investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. *Lancet Neurol.* 2007;6:215–222. doi: 10.1016/S1474-4422(07)70036-4.
- Maciel CB, Sheth KN. Malignant MCA stroke: an update on surgical decompression and future directions. *Curr Atheroscler Rep.* 2015;17:40. doi: 10.1007/s11883-015-0519-4.
- 249. Yang MH, Lin HY, Fu J, Roodrajeetsing G, Shi SL, Xiao SW. Decompressive hemicraniectomy in patients with malignant middle cerebral artery infarction: a systematic review and meta-analysis. *Surgeon*. 2015;13:230–240. doi: 10.1016/j.surge.2014.12.002.
- 250. Alexander P, Heels-Ansdell D, Siemieniuk R, Bhatnagar N, Chang Y, Fei Y, Zhang Y, McLeod S, Prasad K, Guyatt G. Hemicraniectomy versus medical treatment with large MCA infarct: a review and meta-analysis. *BMJ Open.* 2016;6:e014390. doi: 10.1136/bmjopen-2016-014390.
- 251. Sundseth J, Sundseth A, Jacobsen EA, Pripp AH, Sorteberg W, Altmann M, Lindegaard KF, Berg-Johnsen J, Thommessen B. Predictors of early in-hospital death after decompressive craniectomy in swollen middle

cerebral artery infarction. Acta Neurochir (Wien). 2017;159:301–306. doi: 10.1007/s00701-016-3049-0.

- Suyama K, Horie N, Hayashi K, Nagata I. Nationwide survey of decompressive hemicraniectomy for malignant middle cerebral artery infarction in Japan. *World Neurosurg*. 2014;82:1158–1163. doi: 10.1016/j. wneu.2014.07.015.
- 253. Yu JW, Choi JH, Kim DH, Cha JK, Huh JT. Outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 70 years old. J Cerebrovasc Endovasc Neurosurg. 2012;14:65–74. doi: 10.7461/jcen.2012.14.2.65.
- 254. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, Gondan M, Schiller P, Limprecht R, Luntz S, Schneider H, Pinzer T, Hobohm C, Meixensberger J, Hacke W; DESTINY II Investigators. Hemicraniectomy in older patients with extensive middle-cerebralartery stroke. N Engl J Med. 2014;370:1091–1100. doi: 10.1056/ NEJMoa1311367.
- 255. Zhao J, Su YY, Zhang Y, Zhang YZ, Zhao R, Wang L, Gao R, Chen W, Gao D. Decompressive hemicraniectomy in malignant middle cerebral artery infarct: a randomized controlled trial enrolling patients up to 80 years old. *Neurocrit Care*. 2012;17:161–171. doi: 10.1007/s12028-012-9703-3.
- Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. *Crit Care Med.* 2010;38:1348–1359. doi: 10.1097/CCM.0b013e3181d8cf2b.
- 257. Wan YH, Nie C, Wang HL, Huang CY. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: a meta-analysis. J Stroke Cerebrovasc Dis. 2014;23:2736–2747. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.017.
- Roh JK, Kang DW, Lee SH, Yoon BW, Chang KH. Significance of acute multiple brain infarction on diffusion-weighted imaging. *Stroke*. 2000;31:688–694.
- Kang DW, Chalela JA, Ezzeddine MA, Warach S. Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. *Arch Neurol.* 2003;60:1730–1734. doi: 10.1001/archneur.60.12.1730.
- Cho AH, Kim JS, Jeon SB, Kwon SU, Lee DH, Kang DW. Mechanism of multiple infarcts in multiple cerebral circulations on diffusion-weighted imaging. *J Neurol*. 2007;254:924–930. doi: 10.1007/s00415-006-0397-3.
- 261. Braemswig TB, Usnich T, Albach FN, Brunecker P, Grittner U, Scheitz JF, Fiebach JB, Nolte CH. Early new diffusion-weighted imaging lesions appear more often in stroke patients with a multiple territory lesion pattern. *Stroke*. 2013;44:2200–2204. doi: 10.1161/STROKEAHA.111.000810.
- 262. Depuydt S, Sarov M, Vandendries C, Guedj T, Cauquil C, Assayag P, Lambotte O, Ducreux D, Denier C. Significance of acute multiple infarcts in multiple cerebral circulations on initial diffusion weighted imaging in stroke patients. *J Neurol Sci.* 2014;337:151–155. doi: 10.1016/j. jns.2013.11.039.
- 263. Rabinstein AA, Fugate JE, Mandrekar J, Burns JD, Seet RC, Dupont SA, Kauffman TJ, Asirvatham SJ, Friedman PA. Paroxysmal atrial fibrillation in cryptogenic stroke: a case-control study. J Stroke Cerebrovasc Dis. 2013;22:1405–1411. doi: 10.1016/j.jstrokecerebrovasdis.2013.05.013.
- 264. Bernstein RA, Di Lazzaro V, Rymer MM, Passman RS, Brachmann J, Morillo CA, Sanna T, Thijs V, Rogers T, Liu S, Ziegler PD, Diener HC. Infarct topography and detection of atrial fibrillation in cryptogenic stroke: results from CRYSTAL AF. *Cerebrovasc Dis.* 2015;40:91–96. doi: 10.1159/000437018.
- 265. Favilla CG, Ingala E, Jara J, Fessler E, Cucchiara B, Messé SR, Mullen MT, Prasad A, Siegler J, Hutchinson MD, Kasner SE. Predictors of finding occult atrial fibrillation after cryptogenic stroke. 2015;46:1210–1215. doi: 10.1161/STROKEAHA.114.007763.
- 266. Sudacevschi V, Bertrand C, Chadenat ML, Tarnaud C, Pico F. Predictors of occult atrial fibrillation in one hundred seventy-one patients with cryptogenic transient ischemic attack and minor stroke. *J Stroke Cerebrovasc Dis.* 2016;25:2673–2677. doi: 10.1016/j. jstrokecerebrovasdis.2016.07.014.
- 267. Novotny V, Thomassen L, Waje-Andreassen U, Naess H. Acute cerebral infarcts in multiple arterial territories associated with cardioembolism. *Acta Neurol Scand.* 2017;135:346–351. doi: 10.1111/ane.12606.
- Ois A, Cuadrado-Godia E, Rodríguez-Campello A, Jimenez-Conde J, Roquer J. High risk of early neurological recurrence in symptomatic carotid stenosis. *Stroke*. 2009;40:2727–2731. doi: 10.1161/STROKEAHA.109.548032.
- 269. De Rango P, Brown MM, Chaturvedi S, Howard VJ, Jovin T, Mazya MV, Paciaroni M, Manzone A, Farchioni L, Caso V. Summary of evidence on early carotid intervention for recently symptomatic stenosis based on

meta-analysis of current risks. Stroke. 2015;46:3423–3436. doi: 10.1161/ STROKEAHA.115.010764.

- 270. Marnane M, Ni Chroinin D, Callaly E, Sheehan OC, Merwick A, Hannon N, Horgan G, Kyne L, Moroney J, McCormack PM, Dolan E, Duggan J, Williams D, Crispino-O'Connell G, Kelly PJ. Stroke recurrence within the time window recommended for carotid endarterectomy. *Neurology*. 2011;77:738–743. doi: 10.1212/WNL.0b013e31822b00cf.
- Johansson EP, Arnerlöv C, Wester P. Risk of recurrent stroke before carotid endarterectomy: the ANSYSCAP study. *Int J Stroke*. 2013;8:220– 227. doi: 10.1111/j.1747-4949.2012.00790.x.
- 272. Strömberg S, Nordanstig A, Bentzel T, Österberg K, Bergström GM. Risk of early recurrent stroke in symptomatic carotid stenosis. *Eur J Vasc Endovasc Surg.* 2015;49:137–144. doi: 10.1016/j.ejvs.2014.11.004.
- 273. Kazandjian C, Kretz B, Lemogne B, Aboa Eboulé C, Béjot Y, Steinmetz E. Influence of the type of cerebral infarct and timing of intervention in the early outcomes after carotid endarterectomy for symptomatic stenosis. *J Vasc Surg.* 2016;63:1256–1261. doi: 10.1016/j.jvs.2015.10.097.
- Azzini C, Gentile M, De Vito A, Traina L, Sette E, Fainardi E, Mascoli F, Casetta I. Very early carotid endarterectomy after intravenous thrombolysis. *Eur J Vasc Endovasc Surg.* 2016;51:482–486. doi: 10.1016/j. ejvs.2015.11.006.
- 275. Adachi K, Sadato A, Hayakawa M, Maeda S, Hirose Y. Acute carotid artery stenting in symptomatic high-grade cervical carotid artery stenosis. *Neurosurg Rev.* 2017;40:45–51. doi: 10.1007/s10143-016-0737-4.
- Vasconcelos V, Cassola N, da Silva EM, Baptista-Silva JC. Immediate versus delayed treatment for recently symptomatic carotid artery stenosis. *Cochrane Database Syst Rev.* 2016;9:CD011401. doi: 10.1002/14651858.CD011401.pub2.
- 277. Ferguson GG, Eliasziw M, Barr HW, Clagett GP, Barnes RW, Wallace MC, Taylor DW, Haynes RB, Finan JW, Hachinski VC, Barnett HJ. The North American Symptomatic Carotid Endarterectomy Trial: surgical results in 1415 patients. *Stroke*. 1999;30:1751–1758.
- 278. Turan TN, Maidan L, Cotsonis G, Lynn MJ, Romano JG, Levine SR, Chimowitz MI; for the Warfarin-Aspirin Symptomatic Intracranial Disease Investigators. Failure of antithrombotic therapy and risk of stroke in patients with symptomatic intracranial stenosis. *Stroke*. 2009;40:505– 509. doi: 10.1161/STROKEAHA.108.528281.
- 279. Jung JM, Kang DW, Yu KH, Koo JS, Lee JH, Park JM, Hong KS, Cho YJ, Kim JS, Kwon SU; on behalf of the TOSS-2 Investigators. Predictors of recurrent stroke in patients with symptomatic intracranial arterial stenosis. *Stroke*. 2012;43:2785–2787. doi: 10.1161/STROKEAHA.112.659185.
- 280. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, Levine SR, Chaturvedi S, Kasner SE, Benesch CG, Sila CA, Jovin TG, Romano JG; Warfarin-Aspirin Symptomatic Intracranial Disease Trial Investigators. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. *N Engl J Med.* 2005;352:1305– 1316. doi: 10.1056/NEJMoa043033.
- 281. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, Janis LS, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride GL Jr, Torbey MT, Zaidat OO, Rumboldt Z, Cloft HJ; SAMMPRIS Trial Investigators. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365:993–1003. doi: 10.1056/NEJMoa1105335.
- 282. Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, Montgomery J, Nizam A, Lane BF, Lutsep HL, Barnwell SL, Waters MF, Hoh BL, Hourihane JM, Levy EI, Alexandrov AV, Harrigan MR, Chiu D, Klucznik RP, Clark JM, McDougall CG, Johnson MD, Pride GL Jr, Lynch JR, Zaidat OO, Rumboldt Z, Cloft HJ; Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis Trial Investigators. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. *Lancet.* 2014;383:333–341. doi: 10.1016/S0140-6736(13)62038-3.
- 283. Lutsep HL, Barnwell SL, Larsen DT, Lynn MJ, Hong M, Turan TN, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Investigators. Outcome in patients previously on antithrombotic therapy in the SAMMPRIS trial: subgroup analysis. *Stroke*. 2015;46:775–779. doi: 10.1161/STROKEAHA.114.007752.
- Chaturvedi S, Turan TN, Lynn MJ, Derdeyn CP, Fiorella D, Janis LS, Chimowitz MI; for the SAMMPRIS Trial Investigators. Do patient characteristics explain the differences in outcome between medically treated patients in SAMMPRIS and WASID? *Stroke*. 2015;46:2562–2567. doi: 10.1161/STROKEAHA.115.009656.

- 285. Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J, Smith HH, Nichols F, Rogg J, Cloft HJ, Wechsler L, Saver J, Levine SR, Tegeler C, Adams R, Sloan M; Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) Trial Investigators. The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial. *Neurology*. 2007;68:2099–2106. doi: 10.1212/01.wnl.0000261488.05906.c1.
- Liebeskind DS, Kosinski AS, Saver JL, Feldmann E; SONIA Investigators. Computed tomography angiography in the Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) study. *Interv Neurol.* 2014;2:153–159. doi: 10.1159/000360952.
- Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke: EAFT (European Atrial Fibrillation Trial) Study Group. *Lancet.* 1993;342:1255–62.
- Sposato LA, Cipriano LE, Saposnik G, Ruíz Vargas E, Riccio PM, Hachinski V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. *Lancet Neurol.* 2015;14:377–387. doi: 10.1016/S1474-4422(15)70027-X.
- Higgins P, MacFarlane PW, Dawson J, McInnes GT, Langhorne P, Lees KR. Noninvasive cardiac event monitoring to detect atrial fibrillation after ischemic stroke: a randomized, controlled trial. *Stroke*. 2013;44:2525–2531. doi: 10.1161/STROKEAHA.113.001927.
- 290. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GY, Ip J, Holcomb R, Akar JG, Halperin JL; IMPACT Investigators. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. *Eur Heart J.* 2015;36:1660–1668. doi: 10.1093/eurheartj/ehv115.
- 291. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thijs V, Rogers T, Beckers F, Lindborg K, Brachmann J; CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. *N Engl J Med.* 2014;370:2478–2486. doi: 10.1056/NEJMoa1313600.
- 292. Brachmann J, Morillo CA, Sanna T, Di Lazzaro V, Diener HC, Bernstein RA, Rymer M, Ziegler PD, Liu S, Passman RS. Uncovering atrial fibrillation beyond short-term monitoring in cryptogenic stroke patients: three-year results from the Cryptogenic Stroke and Underlying Atrial Fibrillation Trial. *Circ Arrhythm Electrophysiol*. 2016;9:e003333. doi: 10.1161/CIRCEP.115.003333.
- 293. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, Vaid H, O'Donnell M, Laupacis A, Côté R, Sharma M, Blakely JA, Shuaib A, Hachinski V, Coutts SB, Sahlas DJ, Teal P, Yip S, Spence JD, Buck B, Verreault S, Casaubon LK, Penn A, Selchen D, Jin A, Howse D, Mehdiratta M, Boyle K, Aviv R, Kapral MK, Mamdani M; EMBRACE Investigators and Coordinators. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014;370:2467–2477. doi: 10.1056/ NEJMoa1311376.
- 294. Wachter R, Gröschel K, Gelbrich G, Hamann GF, Kermer P, Liman J, Seegers J, Wasser K, Schulte A, Jürries F, Messerschmid A, Behnke N, Gröschel S, Uphaus T, Grings A, Ibis T, Klimpe S, Wagner-Heck M, Arnold M, Protsenko E, Heuschmann PU, Conen D, Weber-Krüger M; Find-AF_{RANDOMISED} Investigators and Coordinators. Holterelectrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AF_{RANDOMISED}): an open-label randomised controlled trial. *Lancet Neurol.* 2017;16:282–290. doi: 10.1016/S1474-4422(17)30002-9.
- 295. Higgins P, Dawson J, MacFarlane PW, McArthur K, Langhorne P, Lees KR. Predictive value of newly detected atrial fibrillation paroxysms in patients with acute ischemic stroke, for atrial fibrillation after 90 days. *Stroke*. 2014;45:2134–2136. doi: 10.1161/STROKEAHA.114.005405.
- 296. Meenan RT, Saha S, Chou R, Swarztrauber K, Krages KP, O'Keefee-Rosetti M, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Effectiveness and cost-effectiveness of echocardiography and carotid imaging in the management of stroke. *Evid Rep Technol Assess (Summ)*. 2002:1–10.
- 297. McNamara RL, Lima JA, Whelton PK, Powe NR. Echocardiographic identification of cardiovascular sources of emboli to guide clinical management of stroke: a cost-effectiveness analysis. *Ann Intern Med.* 1997;127:775–787.
- 298. Meenan RT, Saha S, Chou R, Swarztrauber K, Pyle Krages K, O'Keeffe-Rosetti MC, McDonagh M, Chan BK, Hornbrook MC, Helfand M. Costeffectiveness of echocardiography to identify intracardiac thrombus among patients with first stroke or transient ischemic attack. *Med Decis Making*. 2007;27:161–177. doi: 10.1177/0272989X06297388.
- 299. Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, Settergren M, Sjöstrand C, Roine RO, Hildick-Smith D, Spence JD, Thomassen L; Gore REDUCE Clinical Study

Investigators. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. *N Engl J Med.* 2017;377:1033–1042. doi: 10.1056/ NEJMoa1707404.

- 300. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, Arquizan C, Béjot Y, Vuillier F, Detante O, Guidoux C, Canaple S, Vaduva C, Dequatre-Ponchelle N, Sibon I, Garnier P, Ferrier A, Timsit S, Robinet-Borgomano E, Sablot D, Lacour JC, Zuber M, Favrole P, Pinel JF, Apoil M, Reiner P, Lefebvre C, Guérin P, Piot C, Rossi R, Dubois-Randé JL, Eicher JC, Meneveau N, Lusson JR, Bertrand B, Schleich JM, Godart F, Thambo JB, Leborgne L, Michel P, Pierard L, Turc G, Barthelet M, Charles-Nelson A, Weimar C, Moulin T, Juliard JM, Chatellier G; CLOSE Investigators. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. *N Engl J Med.* 2017;377:1011–1021. doi: 10.1056/NEJMoa1705915.
- 301. Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med. 2013;368:1092–1100. doi: 10.1056/NEJMoa1301440.
- 302. Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, Tirschwell DL; RESPECT Investigators. Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med. 2017;377:1022–1032. doi: 10.1056/NEJMoa1610057.
- 303. Meier B, Kalesan B, Mattle HP, Khattab AA, Hildick-Smith D, Dudek D, Andersen G, Ibrahim R, Schuler G, Walton AS, Wahl A, Windecker S, Jüni P; PC Trial Investigators. Percutaneous closure of patent foramen ovale in cryptogenic embolism. *N Engl J Med.* 2013;368:1083–1091. doi: 10.1056/NEJMoa1211716.
- 304. Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, Felberg R, Herrmann H, Kar S, Landzberg M, Raizner A, Wechsler L; CLOSURE I Investigators. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. *N Engl J Med*. 2012;366:991–999. doi: 10.1056/NEJMoa1009639.
- 305. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, Reiner Ž, Riccardi G, Taskinen MR, Tokgozoglu L, Verschuren WM, Vlachopoulos C, Wood DA, Zamorano JL, 2016 ESC/EAS guidelines for the management of dyslipidaemias. *Eur Heart J*. 2016;37:2999–3058. doi: 10.1093/ eurheartj/ehw272.
- NICE (National Institute for Health and Care Excellence). Cardiovascular disease: risk assessment and reduction, including lipid modification. 2014. https://www.nice.org.uk/guidance/cg181. Accessed January 3, 2018.
- 307. Anderson TJ, Grégoire J, Hegele RA, Couture P, Mancini GB, McPherson R, Francis GA, Poirier P, Lau DC, Grover S, Genest J Jr, Carpentier AC, Dufour R, Gupta M, Ward R, Leiter LA, Lonn E, Ng DS, Pearson GJ, Yates GM, Stone JA, Ur E. 2012 Update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. *Can J Cardiol.* 2013;29:151–167. doi: 10.1016/j.cjca.2012.11.032.
- 308. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–1722. doi: 10.1056/NEJMoa1615664.
- Connors JM. Thrombophilia testing and venous thrombosis. N Engl J Med. 2017;377:1177–1187. doi: 10.1056/NEJMra1700365.
- 310. Brown DL, Chervin RD, Hickenbottom SL, Langa KM, Morgenstern LB. Screening for obstructive sleep apnea in stroke patients: a cost-effectiveness analysis. *Stroke*. 2005;36:1291–1293. doi: 10.1161/01. STR.0000166055.52742.2b.
- 311. Pack AI, Pien GW. Update on sleep and its disorders. Annu Rev Med. 2011;62:447–460. doi: 10.1146/annurev-med-050409-104056.
- 312. Medeiros CA, de Bruin VM, Andrade GM, Coutinho WM, de Castro-Silva C, de Bruin PF. Obstructive sleep apnea and biomarkers of inflammation in ischemic stroke. *Acta Neurol Scand.* 2012;126:17–22. doi: 10.1111/j.1600-0404.2011.01589.x.
- 313. Camilo MR, Sander HH, Eckeli AL, Fernandes RM, Dos Santos-Pontelli TE, Leite JP, Pontes-Neto OM. SOS score: an optimized score to screen acute stroke patients for obstructive sleep apnea. *Sleep Med.* 2014;15:1021–1024. doi: 10.1016/j.sleep.2014.03.026.
- 314. Stahl SM, Yaggi HK, Taylor S, Qin L, Ivan CS, Austin C, Ferguson J, Radulescu R, Tobias L, Sico J, Vaz Fragoso CA, Williams LS, Lampert R, Miech EJ, Matthias MS, Kapoor J, Bravata DM. Infarct location and sleep apnea: evaluating the potential association in acute ischemic stroke. *Sleep Med.* 2015;16:1198–1203. doi: 10.1016/j.sleep.2015.07.003.

- 315. Parra O, Sánchez-Armengol A, Bonnin M, Arboix A, Campos-Rodríguez F, Pérez-Ronchel J, Durán-Cantolla J, de la Torre G, González Marcos JR, de la Peña M, Carmen Jiménez M, Masa F, Casado I, Luz Alonso M, Macarrón JL. Early treatment of obstructive apnoea and stroke outcome: a randomised controlled trial. *Eur Respir J*. 2011;37:1128–1136. doi: 10.1183/09031936.00034410.
- 316. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, Mediano O, Chen R, Drager LF, Liu Z, Chen G, Du B, McArdle N, Mukherjee S, Tripathi M, Billot L, Li Q, Lorenzi-Filho G, Barbe F, Redline S, Wang J, Arima H, Neal B, White DP, Grunstein RR, Zhong N, Anderson CS; SAVE Investigators and Coordinators. CPAP for prevention of cardiovascular events in obstructive sleep apnea. *N Engl J Med*. 2016;375:919– 931. doi: 10.1056/NEJMoa1606599.
- 317. Côté R, Zhang Y, Hart RG, McClure LA, Anderson DC, Talbert RL, Benavente OR. ASA failure: does the combination ASA/clopidogrel confer better long-term vascular protection? *Neurology*. 2014;82:382–389. doi: 10.1212/WNL.00000000000076.
- Lee M, Saver JL, Hong KS, Rao NM, Wu YL, Ovbiagele B. Antiplatelet regimen for patients with breakthrough strokes while on aspirin: a systematic review and meta-analysis. *Stroke*. 2017;48:2610–2613. doi: 10.1161/STROKEAHA.117.017895.
- Mohr JP. Evidence of aspirin and warfarin failure in the WARSS Study. Paper presented at: 27th International Stroke Conference; 2002; San Antonio, TX.
- John S, Katzan I. Recurrent stroke while on antiplatelet therapy. *Neurol Clin*. 2015;33:475–489. doi: 10.1016/j.ncl.2014.12.007.
- 321. Kasner SE, Lynn MJ, Chimowitz MI, Frankel MR, Howlett-Smith H, Hertzberg VS, Chaturvedi S, Levine SR, Stern BJ, Benesch CG, Jovin TG, Sila CA, Romano JG; Warfarin Aspirin Symptomatic Intracranial Disease (WASID) Trial Investigators. Warfarin vs aspirin for symptomatic intracranial stenosis: subgroup analyses from WASID. *Neurology*. 2006;67:1275–1278. doi: 10.1212/01.wnl.0000238506.76873.2f.
- 322. Kim JT, Heo SH, Park MS, Chang J, Choi KH, Cho KH. Use of antithrombotics after hemorrhagic transformation in acute ischemic stroke. *PLoS One*. 2014;9:e89798. doi: 10.1371/journal.pone.0089798.
- 323. England TJ, Bath PM, Sare GM, Geeganage C, Moulin T, O'Neill D, Woimant F, Christensen H, De Deyn P, Leys D, Ringelstein EB; on behalf of the TAIST Investigators. Asymptomatic hemorrhagic transformation of infarction and its relationship with functional outcome and stroke subtype: assessment from the Tinzaparin in Acute Ischaemic Stroke Trial. *Stroke*. 2010;41:2834–2839. doi: 10.1161/STROKEAHA.109.573063.
- 324. CADISS Trial Investigators, Markus HS, Hayter E, Levi C, Feldman A, Venables G, Norris J. Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial. *Lancet Neurol.* 2015;14:361–367.
- 325. Larsson SC, King A, Madigan J, Levi C, Norris JW, Markus HS. Prognosis of carotid dissecting aneurysms: results from CADISS and a systematic review. *Neurology*. 2017;88:646–652. doi: 10.1212/ WNL.000000000003617.
- 326. Ahlhelm F, Benz RM, Ulmer S, Lyrer P, Stippich C, Engelter S. Endovascular treatment of cervical artery dissection: ten case reports and review of the literature. *Interv Neurol.* 2013;1:143–150. doi: 10.1159/000351687.
- 327. Sanossian N, Saver JL, Liebeskind DS, Kim D, Razinia T, Ovbiagele B. Achieving target cholesterol goals after stroke: is in-hospital statin initiation the key? *Arch Neurol.* 2006;63:1081–1083. doi: 10.1001/archneur.63.8.1081.
- Hong KS, Lee JS. Statins in acute ischemic stroke: a systematic review. J Stroke. 2015;17:282–301. doi: 10.5853/jos.2015.17.3.282.
- 329. Kennedy J, Hill MD, Ryckborst KJ, Eliasziw M, Demchuk AM, Buchan AM; FASTER Investigators. Fast assessment of stroke and transient ischaemic attack to prevent early recurrence (FASTER): a randomised controlled pilot trial. *Lancet Neurol.* 2007;6:961–969. doi: 10.1016/S1474-4422(07)70250-8.
- 330. Yoshimura S, Uchida K, Daimon T, Takashima R, Kimura K, Morimoto T; on behalf of the ASSORT Trial Investigator. Randomized controlled trial of early versus delayed statin therapy in patients with acute ischemic stroke: ASSORT trial (Administration of Statin on Acute Ischemic Stroke Patient). *Stroke*. 2017;48:3057–3063. doi: 10.1161/STROKEAHA.117.017623.
- Rigotti NA, Clair C, Munafo MR, Stead LF. Interventions for smoking cessation in hospitalised patients. *Cochrane Database Syst Rev.* 2012:CD001837.
- 332. Stead LF, Koilpillai P, Fanshawe TR, Lancaster T. Combined pharmacotherapy and behavioural interventions for smoking cessation. *Cochrane*

Database Syst Rev. 2016;3:CD008286. doi: 10.1002/14651858. CD008286.pub3.

- 333. Stead LF, Koilpillai P, Lancaster T. Additional behavioural support as an adjunct to pharmacotherapy for smoking cessation. *Cochrane Database Syst Rev.* 2015:CD009670.
- 334. Eisenberg MJ, Windle SB, Roy N, Old W, Grondin FR, Bata I, Iskander A, Lauzon C, Srivastava N, Clarke A, Cassavar D, Dion D, Haught H, Mehta SR, Baril JF, Lambert C, Madan M, Abramson BL, Dehghani P; for the EVITA Investigators. Varenicline for smoking cessation in hospitalized patients with acute coronary syndrome. *Circulation.* 2016;133:21–30. doi: 10.1161/CIRCULATIONAHA.115.019634.
- 335. Lee MJ, Park E, Kim HC, Lee HS, Cha MJ, Kim YD, Heo JH, Nam HS. Timely interventions can increase smoking cessation rate in men with ischemic stroke. J Korean Acad Nurs. 2016;46:610–617. doi: 10.4040/ jkan.2016.46.4.610.
- 336. Schwartz J, Dreyer RP, Murugiah K, Ranasinghe I. Contemporary prehospital emergency medical services response times for suspected stroke in the United States. *Prehosp Emerg Care*. 2016;20:560–565. doi: 10.3109/10903127.2016.1139219.
- 337. Morgenstern LB, Gonzales NR, Maddox KE, Brown DL, Karim AP, Espinosa N, Moyé LA, Pary JK, Grotta JC, Lisabeth LD, Conley KM. A randomized, controlled trial to teach middle school children to recognize stroke and call 911: the Kids Identifying and Defeating Stroke Project. *Stroke*. 2007;38:2972–2978. doi: 10.1161/STROKEAHA.107.490078.
- 338. Carrera D, Campbell BC, Cortés J, Gorchs M, Querol M, Jiménez X, Millán M, Dávalos A, Pérez de la Ossa N. Predictive value of modifications of the prehospital rapid arterial occlusion evaluation scale for large vessel occlusion in patients with acute stroke. J Stroke Cerebrovasc Dis. 2017;26:74–77. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.032.
- 339. Kim JT, Chung PW, Starkman S, Sanossian N, Stratton SJ, Eckstein M, Pratt FD, Conwit R, Liebeskind DS, Sharma L, Restrepo L, Tenser MK, Valdes-Sueiras M, Gornbein J, Hamilton S, Saver JL; on behalf of the FAST-MAG Trial (Field Administration of Stroke Therapy–Magnesium) Nurse-Coordinators and Investigators. Field validation of the Los Angeles Motor Scale as a tool for paramedic assessment of stroke severity. Stroke. 2017;48:298–306. doi: 10.1161/STROKEAHA.116.015247.
- McMullan JT, Katz B, Broderick J, Schmit P, Sucharew H, Adeoye O. Prospective prehospital evaluation of the Cincinnati Stroke Triage Assessment Tool. *Prehosp Emerg Care*. 2017:1–8.
- 341. Sauser K, Levine DA, Nickles AV, Reeves MJ. Hospital variation in thrombolysis times among patients with acute ischemic stroke: the contributions of door-to-imaging time and imaging-to-needle time. *JAMA Neurol.* 2014;71:1155–1161. doi: 10.1001/jamaneurol.2014.1528.
- 342. van Wijngaarden JD, Dirks M, Niessen LW, Huijsman R, Dippel DW. Do centres with well-developed protocols, training and infrastructure have higher rates of thrombolysis for acute ischaemic stroke? *QJM*. 2011;104:785–791. doi: 10.1093/qjmed/hcr075.
- 343. Jeng JS, Tang SC, Deng IC, Tsai LK, Yeh SJ, Yip PK. Stroke center characteristics which influence the administration of thrombolytic therapy for acute ischemic stroke: a national survey of stroke centers in Taiwan. J Neurol Sci. 2009;281:24–27. doi: 10.1016/j.jns.2009.03.004.
- 344. Douglas VC, Tong DC, Gillum LA, Zhao S, Brass LM, Dostal J, Johnston SC. Do the Brain Attack Coalition's criteria for stroke centers improve care for ischemic stroke? *Neurology*. 2005;64:422–427. doi: 10.1212/01. WNL.0000150903.38639.E1.
- Asimos AW, Norton HJ, Price MF, Cheek WM. Therapeutic yield and outcomes of a community teaching hospital code stroke protocol. *Acad Emerg Med.* 2004;11:361–370.
- 346. Demaerschalk BM, Bobrow BJ, Raman R, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Ward MP, Richemont PC, Brazdys K, Koch TC, Miley ML, Hoffman Snyder CR, Corday DA, Meyer BC; for the STRokE DOC AZ TIME Investigators. Stroke team remote evaluation using a digital observation camera in Arizona: the initial Mayo Clinic Experience Trial. *Stroke*. 2010;41:1251–1258. doi: 10.1161/STROKEAHA.109.574509.
- 347. Meyer BC, Raman R, Hemmen T, Obler R, Zivin JA, Rao R, Thomas RG, Lyden PD. Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study. *Lancet Neurol.* 2008;7:787–795. doi: 10.1016/S1474-4422(08)70171-6.
- 348. Rai AT, Smith MS, Boo S, Tarabishy AR, Hobbs GR, Carpenter JS. The 'pit-crew' model for improving door-to-needle times in endovascular stroke therapy: a Six-Sigma project. J Neurointerv Surg. 2016;8:447– 452. doi: 10.1136/neurintsurg-2015-012219.
- 349. Wardlaw JM, Carpenter T, Sakka E, Mair G, Cohen G, Shuler K, Palmer JM, Innes K, Sandercock PA. Imaging perfusion deficits, arterial patency and thrombolysis safety and efficacy in acute ischaemic stroke: an

observational study of the effect of advanced imaging methods in the Third International Stroke Trial (IST-3), a randomised controlled trial. *Efficacy Mech Eval.* 2014;1(3). doi: 10.3310/eme.01030.

- 350. Mocco J, Zaidat OO, von Kummer R, Yoo AJ, Gupta R, Lopes D, Frei D, Shownkeen H, Budzik R, Ajani ZA, Grossman A, Altschul D, McDougall C, Blake L, Fitzsimmons BF, Yavagal D, Terry J, Farkas J, Lee SK, Baxter B, Wiesmann M, Knauth M, Heck D, Hussain S, Chiu D, Alexander MJ, Malisch T, Kirmani J, Miskolczi L, Khatri P; THERAPY Trial Investigators. Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone. *Stroke*. 2016;47:2331–2338. doi: 10.1161/STROKEAHA.116.013372.
- 351. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, Jauch EC, Jovin TG, Yan B, Silver FL, von Kummer R, Molina CA, Demaerschalk BM, Budzik R, Clark WM, Zaidat OO, Malisch TW, Goyal M, Schonewille WJ, Mazighi M, Engelter ST, Anderson C, Spilker J, Carrozzella J, Ryckborst KJ, Janis LS, Martin RH, Foster LD, Tomsick TA; Interventional Management of Stroke (IMS) III Investigators. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. *N Engl J Med*. 2013;368:893–903. doi: 10.1056/ NEJMoa1214300.
- 352. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, Boccardi E; SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke. *N Engl J Med.* 2013;368:904–913. doi: 10.1056/NEJMoa1213701.
- 353. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, Feng L, Meyer BC, Olson S, Schwamm LH, Yoo AJ, Marshall RS, Meyers PM, Yavagal DR, Wintermark M, Guzy J, Starkman S, Saver JL; MR RESCUE Investigators. A trial of imaging selection and endovascular treatment for ischemic stroke. *N Engl J Med.* 2013;368:914–923. doi: 10.1056/NEJMoa1212793.
- 354. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS, Smith WS; TREVO 2 Trialists. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. *Lancet*. 2012;380:1231–1240. doi: 10.1016/S0140-6736(12)61299-9.
- 355. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R, Zaidat OO; SWIFT Trialists. Solitaire Flow Restoration Device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. *Lancet*. 2012;380:1241–1249. doi: 10.1016/S0140-6736(12)61384-1.
- 356. Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, Miyamoto S, Sasaki M, Inoue T; for the MELT Japan Study Group. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: the Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. *Stroke*. 2007;38:2633–2639. doi: 10.1161/STROKEAHA.107.488551.
- 357. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F. Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial: Prolyse in Acute Cerebral Thromboembolism. *JAMA*. 1999;282:2003–2011.
- 358. Ali K, Warusevitane A, Lally F, Sim J, Sills S, Pountain S, Nevatte T, Allen M, Roffe C. The Stroke Oxygen Pilot Study: a randomized controlled trial of the effects of routine oxygen supplementation early after acute stroke: effect on key outcomes at six months. *PLoS One*. 2014;8:e59274. doi: 10.1371/journal.pone.0059274.
- 359. Singhal A, Partners SPOTRIAS Investigators. A phase IIB clinical trial of normobaric oxygen therapy (NBO) in acute ischemic stroke (AIS). *Neurology*. 2013;80(suppl):S02.001.
- 360. Roffe C, Ali K, Warusevitane A, Sills S, Pountain S, Allen M, Hodsoll J, Lally F, Jones P, Crome P. The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke: effect on recovery of neurological function at one week. *PLoS One.* 2011;6:e19113. doi: 10.1371/ journal.pone.0019113.
- 361. Roffe C, Sills S, Pountain SJ, Allen M. A randomized controlled trial of the effect of fixed-dose routine nocturnal oxygen supplementation on oxygen saturation in patients with acute stroke. J Stroke Cerebrovasc Dis. 2010;19:29–35. doi: 10.1016/j.jstrokecerebrovasdis.2009.02.008.
- 362. Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, Buonanno FS, Gonzalez RG, Sorensen AG. A pilot study of normobaric oxygen therapy in acute ischemic stroke. *Stroke*. 2005;36:797–802. doi: 10.1161/01.STR.0000158914.66827.2e.
- Rønning OM, Guldvog B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. *Stroke*. 1999;30:2033–2037.

- 364. Adelman EE, Scott PA, Skolarus LE, Fox AK, Frederiksen SM, Meurer WJ. Protocol deviations before and after treatment with intravenous tissue plasminogen activator in community hospitals. J Stroke Cerebrovasc Dis. 2016;25:67–73. doi: 10.1016/j.jstrokecerebrovasdis.2015.08.036.
- 365. Kodankandath TV, Shaji J, Kohn N, Arora R, Salamon E, Libman RB, Katz JM. Poor hypertension control and longer transport times are associated with worse outcome in drip-and-ship stroke patients. J Stroke Cerebrovasc Dis. 2016;25:1887–1890. doi: 10.1016/j. jstrokecerebrovasdis.2016.04.013.
- 366. Lyerly MJ, Albright KC, Boehme AK, Bavarsad Shahripour R, Houston JT, Rawal PV, Kapoor N, Alvi M, Sisson A, Alexandrov AW, Alexandrov AV. Safety of protocol violations in acute stroke tPA administration. J Stroke Cerebrovasc Dis. 2014;23:855–860. doi: 10.1016/j. jstrokecerebrovasdis.2013.07.019.
- 367. Kellert L, Rocco A, Sykora M, Hacke W, Ringleb PA. Frequency of increased blood pressure levels during systemic thrombolysis and risk of intracerebral hemorrhage. *Stroke*. 2011;42:1702–1706. doi: 10.1161/ STROKEAHA.110.604744.
- Karaszewski B, Thomas RG, Dennis MS, Wardlaw JM. Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome. *BMC Neurol.* 2012;12:123. doi: 10.1186/1471-2377-12-123.
- 369. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW. An early rise in body temperature is related to unfavorable outcome after stroke: data from the PAIS study. J Neurol. 2011;258:302–307. doi: 10.1007/s00415-010-5756-4.
- 370. Broessner G, Beer R, Lackner P, Helbok R, Fischer M, Pfausler B, Rhorer J, Küppers-Tiedt L, Schneider D, Schmutzhard E. Prophylactic, endovascularly based, long-term normothermia in ICU patients with severe cerebrovascular disease: bicenter prospective, randomized trial. *Stroke*. 2009;40:e657–e665. doi: 10.1161/STROKEAHA.109.557652.
- 371. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW; PAIS Investigators. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial: a multicentre, randomised, placebo-controlled, phase III trial. *Lancet Neurol*. 2009;8:434–440. doi: 10.1016/S1474-4422(09)70051-1.
- 372. Horn CM, Sun CH, Nogueira RG, Patel VN, Krishnan A, Glenn BA, Belagaje SR, Thomas TT. Anderson AM, Frankel MR, Schindler KM, Gupta R. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). J Neurointerv Surg. 2014;6:91–95. doi: 10.1136/neurintsurg-2013-010656.
- 373. Su Y, Fan L, Zhang Y, Zhang Y, Ye H, Gao D, Chen W, Liu G. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction. *Stroke*. 2016;47:457–463. doi: 10.1161/STROKEAHA.115.009789.
- 374. Hong JM, Lee JS, Song HJ, Jeong HS, Jung HS, Choi HA, Lee K. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke. *Stroke*. 2014;45:134–140. doi: 10.1161/STROKEAHA. 113.003143.
- 375. Ovesen C, Brizzi M, Pott FC, Thorsen-Meyer HC, Karlsson T, Ersson A, Christensen H, Norrlin A, Meden P, Krieger DW, Petersson J. Feasibility of endovascular and surface cooling strategies in acute stroke. *Acta Neurol Scand.* 2013;127:399–405. doi: 10.1111/ane.12059.
- 376. Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study: Thromblytic Therapy in Acute Ischemic Stroke Study Investigators. *Stroke*. 2000;31:811–816.
- 377. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset: the ATLANTIS study: a randomized controlled trial: Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA. 1999;282: 2019–2026.
- 378. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E, Trouillas P. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II): Second European-Australasian Acute Stroke Study Investigators. *Lancet.* 1998;352:1245–1251.
- 379. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, Boysen G, Bluhmki E, Höxter G, Mahagne MH. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:1017–1025.
- Mori E, Minematsu K, Nakagawara J, Hasegawa Y, Nagahiro S, Okada Y, Truelsen T, Lindsten A, Ogawa A, Yamaguchi T; on behalf of the DIAS-J

Investigators. Safety and tolerability of desmoteplase within 3 to 9 hours after symptoms onset in Japanese patients with ischemic stroke. *Stroke*. 2015;46:2549–2554. doi: 10.1161/STROKEAHA.115.009917.

- 381. Coutinho JM, Liebeskind DS, Slater LA, Nogueira RG, Clark W, Davalos A, Bonafe A, Jahan R, Fischer U, Gralla J, Saver JL, Pereira VM. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemic stroke: a pooled analysis of the SWIFT and STAR Studies. *JAMA Neurol.* 2017;74:268–274. doi: 10.1001/ jamaneurol.2016.5374.
- 382. Grech R, Pullicino R, Thornton J, Downer J. An efficacy and safety comparison between different stentriever designs in acute ischaemic stroke: a systematic review and meta-analysis. *Clin Radiol.* 2016;71:48–57. doi: 10.1016/j.crad.2015.09.011.
- 383. Rodrigues FB, Neves JB, Caldeira D, Ferro JM, Ferreira JJ, Costa J. Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis. *BMJ*. 2016;353:i1754.
- Touma L, Filion KB, Sterling LH, Atallah R, Windle SB, Eisenberg MJ. Stent retrievers for the treatment of acute ischemic stroke: a systematic review and meta-analysis of randomized clinical trials. *JAMA Neurol.* 2016;73:275–281. doi: 10.1001/jamaneurol.2015.4441.
- 385. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, Kulkarni AV, Singh S, Alqahtani A, Rochwerg B, Alshahrani M, Murty NK, Alhazzani A, Yarascavitch B, Reddy K, Zaidat OO, Almenawer SA. Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. *JAMA*. 2015;314:1832–1843. doi: 10.1001/jama.2015.13767.
- Chen CJ, Ding D, Starke RM, Mehndiratta P, Crowley RW, Liu KC, Southerland AM, Worrall BB. Endovascular vs medical management of acute ischemic stroke. *Neurology*. 2015;85:1980–1990. doi: 10.1212/ WNL.000000000002176.
- 387. Elgendy IY, Kumbhani DJ, Mahmoud A, Bhatt DL, Bavry AA. Mechanical thrombectomy for acute ischemic stroke: a meta-analysis of randomized trials. J Am Coll Cardiol. 2015;66:2498–2505. doi: 10.1016/j.jacc.2015.09.070.
- 388. Fargen KM, Neal D, Fiorella DJ, Turk AS, Froehler M, Mocco J. A meta-analysis of prospective randomized controlled trials evaluating endovascular therapies for acute ischemic stroke. *J Neurointerv Surg.* 2015;7:84–89. doi: 10.1136/neurintsurg-2014-011543.
- Kumar G, Shahripour RB, Alexandrov AV. Recanalization of acute basilar artery occlusion improves outcomes: a meta-analysis. *J Neurointerv* Surg. 2015;7:868–874. doi: 10.1136/neurintsurg-2014-011418.
- 390. Marmagkiolis K, Hakeem A, Cilingiroglu M, Gundogdu B, Iliescu C, Tsitlakidou D, Katramados A. Safety and efficacy of stent retrievers for the management of acute ischemic stroke: comprehensive review and meta-analysis. *JACC Cardiovasc Interv.* 2015;8:1758–1765. doi: 10.1016/j.jcin.2015.07.021.
- 391. Yarbrough CK, Ong CJ, Beyer AB, Lipsey K, Derdeyn CP. Endovascular thrombectomy for anterior circulation stroke: systematic review and meta-analysis. *Stroke*. 2015;46:3177–3183. doi: 10.1161/ STROKEAHA.115.009847.
- 392. Almekhlafi MA, Menon BK, Freiheit EA, Demchuk AM, Goyal M. A meta-analysis of observational intra-arterial stroke therapy studies using the Merci device, Penumbra system, and retrievable stents. *AJNR Am J Neuroradiol.* 2013;34:140–145. doi: 10.3174/ajnr.A3276.
- 393. Fields JD, Khatri P, Nesbit GM, Liu KC, Barnwell SL, Lutsep HL, Clark WM, Lansberg MG. Meta-analysis of randomized intra-arterial thrombolytic trials for the treatment of acute stroke due to middle cerebral artery occlusion. J Neurointerv Surg. 2011;3:151–155. doi: 10.1136/ jnis.2010.002766.
- 394. Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2015;36:525–529. doi: 10.3174/ajnr. A4159.
- 395. Li W, Lin L, Zhang M, Wu Y, Liu C, Li X, Huang S, Liang C, Wang Y, Chen J, Feng W. Safety and preliminary efficacy of early tirofiban treatment after alteplase in acute ischemic stroke patients. *Stroke*. 2016;47:2649–2651. doi: 10.1161/STROKEAHA.116.014413.
- 396. Wada T, Yasunaga H, Horiguchi H, Fushimi K, Matsubara T, Nakajima S, Yahagi N. Ozagrel for patients with noncardioembolic ischemic stroke: a propensity score-matched analysis. J Stroke Cerebrovasc Dis. 2016;25:2828–2837. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.044.
- Sandercock PA, Counsell C, Kamal AK. Anticoagulants for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2008:CD000024.
- Wang Q, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin and early neurologic deterioration

in acute stroke caused by large artery occlusive disease. *Arch Neurol.* 2012;69:1454–1460. doi: 10.1001/archneurol.2012.1633.

- 399. Wang QS, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin versus aspirin for acute ischemic stroke with large artery occlusive disease: subgroup analyses from the Fraxiparin in Stroke Study for the treatment of ischemic stroke (FISS-tris) study. *Stroke*. 2012;43:346–349. doi: 10.1161/ STROKEAHA.111.628347.
- 400. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, Conwit R, Liebeskind DS, Sung G, Kramer I, Moreau G, Goldweber R, Sanossian N; FAST-MAG Investigators and Coordinators. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. *N Engl J Med.* 2015;372:528–536. doi: 10.1056/NEJMoa1408827.
- 401. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, Kasner SE, Shuaib A, Richieri SP, Dilly SG, Zivin J, Lees KR; for the NEST 3 Committees and Investigators. Transcranial laser therapy in acute stroke treatment: results of Neurothera Effectiveness and Safety Trial 3, a phase III clinical end point device trial. *Stroke*. 2014;45:3187–3193. doi: 10.1161/STROKEAHA.114.005795.
- Seedat J, Penn C. Implementing oral care to reduce aspiration pneumonia amongst patients with dysphagia in a South African setting. S Afr J Commun Disord. 2016;63.
- 403. Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G; CLOTS (Clots in Legs Or sTockings after Stroke) Trials Collaboration. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. *Lancet*. 2013;382:516–524. doi: 10.1016/S0140-6736(13)61050-8.
- 404. Geeganage CM, Sprigg N, Bath MW, Bath PM. Balance of symptomatic pulmonary embolism and symptomatic intracerebral hemorrhage with low-dose anticoagulation in recent ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis. 2013;22:1018–1027. doi: 10.1016/j. jstrokecerebrovasdis.2012.03.005.
- 405. Qaseem A, Chou R, Humphrey LL, Starkey M, Shekelle P; Clinical Guidelines Committee of the American College of Physicians. Venous thromboembolism prophylaxis in hospitalized patients: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2011;155:625–632. doi: 10.7326/0003-4819-155-9-201111010-00011.
- 406. Herisson F, Godard S, Volteau C, Le Blanc E, Guillon B, Gaudron M; SEVEL Study Group. Early Sitting in Ischemic Stroke Patients (SEVEL): a randomized controlled trial. *PLoS One*. 2016;11:e0149466. doi: 10.1371/journal.pone.0149466.
- 407. Morreale M, Marchione P, Pili A, Lauta A, Castiglia SF, Spallone A, Pierelli F, Giacomini P. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? *Eur J Phys Rehabil Med.* 2016;52:81–89.
- 408. Johansson E, Cuadrado-Godia E, Hayden D, Bjellerup J, Ois A, Roquer J, Wester P, Kelly PJ. Recurrent stroke in symptomatic carotid stenosis awaiting revascularization: a pooled analysis. *Neurology*. 2016;86:498–504. doi: 10.1212/WNL.00000000002354.
- 409. Bazan HA, Zea N, Jennings B, Smith TA, Vidal G, Sternbergh WC 3rd. Urgent carotid intervention is safe after thrombolysis for minor to moderate acute ischemic stroke. *J Vasc Surg.* 2015;62:1529–1538. doi: 10.1016/j.jvs.2015.07.082.
- 410. Chisci E, Pigozzi C, Troisi N, Tramacere L, Zaccara G, Cincotta M, Ercolini L, Michelagnoli S. Thirty-day neurologic improvement associated with early versus delayed carotid endarterectomy in symptomatic patients. *Ann Vasc Surg.* 2015;29:435–442. doi: 10.1016/j. avsg.2014.08.028.
- 411. Devlin TG, Phade SV, Hutson RK, Fugate MW, Major GR 2nd, Albers GW, Sirelkhatim AA, Sapkota BL, Quartfordt SD, Baxter BW. Computed tomography perfusion imaging in the selection of acute stroke patients to undergo emergent carotid endarterectomy. *Ann Vasc Surg.* 2015;29:125. e1–125.11. doi: 10.1016/j.avsg.2014.07.023.
- 412. Steglich-Arnholm H, Holtmannspötter M, Kondziella D, Wagner A, Stavngaard T, Cronqvist ME, Hansen K, Højgaard J, Taudorf S, Krieger DW. Thrombectomy assisted by carotid stenting in acute ischemic stroke management: benefits and harms. *J Neurol.* 2015;262:2668–2675. doi: 10.1007/s00415-015-7895-0.
- 413. Ferrero E, Ferri M, Viazzo A, Labate C, Berardi G, Pecchio A, Piazza S, Ripepi M, Nessi F. A retrospective study on early carotid endarterectomy within 48 hours after transient ischemic attack and stroke in evolution. *Ann Vasc Surg.* 2014;28:227–238. doi: 10.1016/j. avsg.2013.02.015.

Stroke

- 414. Limone BL, Baker WL, Mearns ES, White CM, Kluger J, Coleman CI. Common flaws exist in published cost-effectiveness models of pharmacologic stroke prevention in atrial fibrillation. *J Clin Epidemiol*. 2014;67:1093–1102. doi: 10.1016/j.jclinepi.2014.05.013.
- 415. Shariat A, Yaghoubi E, Farazdaghi M, Aghasadeghi K, Borhani Haghighi A. Comparison of medical treatments in cryptogenic stroke patients with patent foramen ovale: a randomized clinical trial. *J Res Med Sci.* 2013;18:94–98.
- 416. Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP; for the PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: Patent Foramen Ovale in Cryptogenic Stroke Study. *Circulation*. 2002;105:2625–2631.
- 417. Kim JT, Park MS, Choi KH, Cho KH, Kim BJ, Han MK, Park TH, Park SS, Lee KB, Lee BC, Yu KH, Oh MS, Cha JK, Kim DH, Nah HW, Lee J, Lee SJ, Ko YC, Kim JG, Park JM, Kang K, Cho YJ, Hong KS, Choi JC, Kim DE, Ryu WS, Shin DI, Yeo MJ, Kim WJ, Lee J, Lee JS, Saver JL, Bae HJ. Different antiplatelet strategies in patients with new ischemic stroke while taking aspirin. *Stroke*. 2016;47:128–134. doi: 10.1161/STROKEAHA.115.011595.
- 418. Lee M, Wu YL, Saver JL, Lee HC, Lee JD, Chang KC, Wu CY, Lee TH, Wang HH, Rao NM, Ovbiagele B. Is clopidogrel better than aspirin following breakthrough strokes while on aspirin? A retrospective cohort study. *BMJ Open.* 2014;4:e006672. doi: 10.1136/ bmjopen-2014-006672.
- 419. Abdul-Rahim AH, Fulton RL, Frank B, Tatlisumak T, Paciaroni M, Caso V, Diener HC, Lees KR; VISTA Collaborators. Association of improved outcome in acute ischaemic stroke patients with atrial fibrillation who receive early antithrombotic therapy: analysis from VISTA. *Eur J Neurol.* 2015;22:1048–1055. doi: 10.1111/ene.12577.
- 420. Jensen J, Salottolo K, Frei D, Loy D, McCarthy K, Wagner J, Whaley M, Bellon R, Bar-Or D. Comprehensive analysis of intra-arterial treatment for acute ischemic stroke due to cervical artery dissection. J Neurointerv Surg. 2017;9:654–658. doi: 10.1136/neurintsurg-2016-012421.
- 421. Aronow HD, Novaro GM, Lauer MS, Brennan DM, Lincoff AM, Topol EJ, Kereiakes DJ, Nissen SE. In-hospital initiation of lipid-lowering therapy after coronary intervention as a predictor of long-term utilization: a propensity analysis. *Arch Intern Med.* 2003;163:2576–2582. doi: 10.1001/archinte.163.21.2576.

2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

William J. Powers, Alejandro A. Rabinstein, Teri Ackerson, Opeolu M. Adeoye, Nicholas C. Bambakidis, Kyra Becker, José Biller, Michael Brown, Bart M. Demaerschalk, Brian Hoh, Edward C. Jauch, Chelsea S. Kidwell, Thabele M. Leslie-Mazwi, Bruce Ovbiagele, Phillip A. Scott, Kevin N. Sheth, Andrew M. Southerland, Deborah V. Summers, David L. Tirschwell and on behalf of the American Heart Association Stroke Council

Stroke. published online January 24, 2018;

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2018 American Heart Association, Inc. All rights reserved. Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://stroke.ahajournals.org/content/early/2018/01/23/STR.000000000000158

An erratum has been published regarding this article. Please see the attached page for: /content/early/2018/04/17/STR.000000000000172.full.pdf

Data Supplement (unedited) at:

http://stroke.ahajournals.org/content/suppl/2018/01/23/STR.0000000000000158.DC1 http://stroke.ahajournals.org/content/suppl/2018/01/23/STR.0000000000000158.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at: http://stroke.ahajournals.org//subscriptions/

CORRECTION

Correction to: 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association

Based on recent feedback received from the clinical stroke community related to the article by Powers et al, "2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association," which published ahead of print January 24, 2018, and appeared in the March 2018 issue of the journal (*Stroke*. 2018;49:e46–e110. DOI: 10.1161/STR.0000000000000158), the American Heart Association/American Stroke Association has reviewed the guideline and is preparing clarifications, modifications, and/or updates to several sections in it. Currently, those sections, listed here, have been deleted from the guideline while this clarifying work is in process:

Section 1.3 EMS Systems Recommendation 4 Section 1.4 Hospital Stroke Capabilities Recommendation 1 Section 1.6 Telemedicine Recommendation 3 Section 2.2 Brain Imaging Recommendation 11 Section 3.2 Blood Pressure Recommendation 3 Section 4.3 Blood Pressure Recommendation 2 Section 4.6 Dysphagia Recommendation 1 Section 6.0 All subsections (11)

We continue to support this corrected version of the guideline and its support for clinical decision-making. After review, a revised guideline, with consideration given to the clarifications, modifications, and/or updates of the sections noted above, will be posted over the coming weeks.

Ensuring our scientific guidelines reflect the best, most comprehensive scientific analysis has always been, and remains, the Association's top priority. We appreciate the continuing commitment and dedication of our volunteer writing group, peer reviewers, and the scientific community at large, who share our devotion to the integrity and quality of guideline development.

The revised, online version of the guideline is available at http://stroke.ahajournals.org/content/49/3/e46.

- 1. On page e49, in Table 2, the following changes have been made:
 - The fourth row beginning "2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol..." has been deleted.
 - The eighth row beginning "Guidelines for the Prevention of Stroke in Patients with Stroke..." has been deleted.
- 2. On page e50, in Table 3, the entry for "TJC," defined as "The Joint Commission," has been deleted.
- 3. On page e52, in section "1.3. EMS Systems," recommendation 4, the associated knowledge byte, and the associated references have been deleted.
- 4. On page e52, section "1.4. Hospital Stroke Capabilities," recommendation 1, the associated knowledge byte, and the associated references have been deleted.

- 5. On page e54, in section "1.6 Telemedicine," recommendation 3 has been deleted.
- 6. On page e59, in section "2.2 Brain Imaging," recommendation 11, the associated knowledge byte, and the associated references have been deleted.
- 7. On page e61 (previously page e62), in section "3.2 Blood Pressure," recommendation 3, the associated knowledge byte, and the associated references have been deleted.
- 8. On page e78 (previously page e79), in section "4.3 Blood Pressure," recommendation 2, the associated knowledge byte, and the associated references have been deleted.
- 9. On page e80 (previously page e81), in section "4.6 Dysphagia Screening," recommendation 1, the associated knowledge byte, and the associated references have been deleted.
- 10. On pages e87 through e93 in the previous version, section "6. In-Hospital Institution of Secondary Prevention: Evaluation" (recommendations, associated knowledge bytes, and references) has been deleted.
- 11. On page e87 (previously page e93), the following sentence was updated to include references 202, 216, 217, 220, 221, 224, 226, 227, 229, 322, 323, 325, and 326: "Additional reference support for this guideline is provided in online Data Supplement 1.^{200,202,216,217,220,221,224,226,227,229,322,325,326,336-402,404.421}"
- 12. On pages e88 through e99 (previously pages e96 through e110), the following references have been deleted: 7, 11, 24-31, 33, 34, 230-234, 258-321, 324, and 327-335.
- 13. In Data Supplement 1, the following changes have been made:
 - Table V, Table VI, Table LI, Table LII, Tables LXI-LXXVI, and Tables LXXVIII-LXXXII have been deleted.
 - In Table LXXXIII, the original wording of text for the following has been deleted:
 - o 1.4 Rec 1
 - o 6.4. Rec 1
 - o 6.6. Recs 1, 2, 3, 4, and 5
 - o 6.7. Recs 1, 4, and 5
 - o 6.10. Recs 1 and 6
 - References 7, 11, 24-31, 33, 34, 230-234, 258-321, 324, and 327-335 have been deleted.

14. In Data Supplement 2, the following changes have been made:

- All references to Data Supplement 1 Table V, Table LI, Tables LXI-LXXVI, and Tables LXXVIII-LXXXII have been deleted.
- Because of these deletions, the following literature search sections have been removed:
 - o ASA Failure
 - o Statins
 - o Smoking
 - Carotid Endarterectomy and Carotid Artery Stenting Timing
 - o Complications After Acute Carotid Endarterectomy or Stenting
 - o Guidelines for Treatment of Blood Cholesterol for Secondary Stroke Prevention
 - o Cost-Effectiveness of Echocardiography in Acute Stroke
 - o Prolonged Cardiac Monitoring for Secondary Stroke Prevention
 - o Symptomatic Carotid Stenosis and Early Recurrent Stroke
 - Risk of Early Carotid Intervention
 - o Routine Screening of Patients With Recent Ischemic Stroke for Obstructive Sleep Apnea

- o MRA Intracranial, Non-Invasive Imaging Intracranial
- CTA Intracranial, Non-Invasive Imaging
- Association of AMIMCC With Stroke Etiologic Classification
- Infarct Topography and Detection of AF By Long Term Monitoring
- Evolocumab and Secondary Stroke Prevention
- o Dysphagia Screening

The pagination of this article has changed from e46–e110 to e46–e99. This has been updated in the citations on pages e46 and e47 and in the issue's online table of contents.

© 2018 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STR.000000000000172

2018 AIS GL Data Supplement 1

Table of Contents

Table I. Nonrandomized Studies of Stroke Awareness and Emergency Medical Services Use	4
Table II. Randomized Clinical Trials for Improving Stroke Awareness.	6
Table III. Nonrandomized Trials, Observational Studies, and/or Registries of Prediction Value of National Institutes of Health Stroke Scale	7
Table IV. Nonrandomized Studies of Emergency Medical Services Use of Prehospital Stroke Severity Scales	
Table V. Deleted	11
Table VI. Deleted	11
Table VII. Nonrandomized Studies of Hospitals Achieving Rapid Door-to-Needle Times for IV Alteplase in Stroke	12
Table VIII. Randomized Clinical Trials Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use	13
Table IX. Nonrandomized Studies Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use	15
Table X. Randomized Clinical Trials of Level of Agreement Between Central Read and Spoke Radiologists and Hub Neurologists in Interpreting Head Computed	
Tomography Scans of Stroke Patients Presenting to Telestroke Hospitals.	17
Table XI. Randomized Clinical Trials Comparing Synchronous Audio Video Telemedicine to Telephone-Only for Acute Ischemic Stroke	19
Table XII. Nonrandomized Trials, Observational Studies, and/or Registries of Telestroke for Triaging Patients for Endovascular Therapy	20
Table XIII. Nonrandomized Trails, Observational Studies, and/or Registries of Alteplase Decision-Making via Telephone Consultation	21
Table XIV. Nonrandomized Studies Assessing the Impact of Stroke System Quality Improvement Processes	22
Table XV. Nonrandomized Trials, Observational Studies, and/or Registries of Computed Tomography and Magnetic Resonance Imaging for Routine Stroke Care	
Table XVI. Observational Studies of 2016 Door-to-Computed Tomography Times.	27
Table XVII. Randomized Clinical Trials of Interaction of Baseline Imaging Computed Tomography Hypodensity with Treatment Effect for Intravenous Alteplase	29
Table XVIII. Randomized Clinical Trials of Interaction of Baseline Computed Tomography Hyperdense Middle Cerebral Artery Sign with Treatment Effect for	
	31
Table XIX. Observational Studies of Interaction of Baseline Magnetic Resonance Imaging of Cerebral Microbleeds with Symptomatic Intracerebral Hemorrhage After	
Intravenous Alteplase	
Table XX. Randomized Clinical Trials of Intravenous Thrombolytics Employing Multimodal Imaging	
Table XXI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Thrombolytics Employing Multimodal Imaging	
Table XXII. Nonrandomized Trials, Observational Studies, and/or Registries of Creatinine Testing Prior to Contrast Computed Tomography	37
Table XXIII. Randomized Clinical Trials Comparing Endovascular Therapy	39
Table XXIV. Nonrandomized Trials, Observational Studies, and/or Registries of Collateral Status	
Table XXV. Nonrandomized Trials, Observational Studies, and/or Registries of Chest Radiography in Patients with Acute Ischemic Stroke	50
Table XXVI. Randomized Clinical Trials Comparing Supplemental Oxygen	
Table XXVII. Nonrandomized Trials, Observational Studies, and/or Registries of Hyperbaric Oxygen	54
Table XXVIII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypotension and Hypovolemia	
Table XXIX. Nonrandomized Trials, Observational Studies, and/or Registries of Blood Pressure and Thrombolysis	59
Table XXX. Nonrandomized Studies of Hyperthermia After Acute Ischemic Stroke	61
Table XXXI. Randomized Clinical Trials of Normothermia	
Table XXXII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypothermia	
Table XXXIII. Randomized Clinical Trials of Hypothermia	64

Table XXXIV. Randomized Clinical Trials Evaluating Intravenous Alteplase for Treatment of Acute Ischemic Stroke	68
Table XXXV. Randomized Clinical Trials of Intravenous Alteolase for Mild Stroke 3–4.5 Hours	
Table XXXVI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Alteplase 3–4.5 Hours for Mild Stroke	73
Table XXXVII. Nonrandomized trials, Observational Studies, and/or Registries of Sickle Cell Disease and IV Alteplase	75
Table XXXVIII. Nonrandomized Trials, Observational Studies of Antithrombotic Agents Given Within 24 Hours After Intravenous Alteplase for the Treatment of	
Acute Ischemic Stroke	
Table XXXIX. Randomized Clinical Trials Evaluating Intravenous Fibrinolytics Other Than Alteplase for Treatment of Acute Ischemic Stroke	76
Table XL. Randomized Clinical Trials of Adjuvant Sonothrombolysis (since 2013 AIS Guidelines)	
Table XLI. Nonrandomized Trials, Observational Studies, and/or Registries of Endovascular Therapy	
Table XLII. Randomized Trials Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy	
Table XLIII. Nonrandomized Trials, Observational Studies, and/or Registries Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy	
Table XLIV. Nonrandomized Studies of Antiplatelet Therapy in Patients with Acute Ischemic Stroke	
Table XLV. Randomized Clinical Trials Comparing Antiplatelet to Control	
Table XLVI. Randomized Clinical Trials Comparing Anticoagulant to Control	99
Table XLVII. Nonrandomized Studies of Anticoagulation in Patients with Acute Ischemic Stroke	
Table XLVIII. Randomized Clinical Trials Comparing Other Treatments for Acute Ischemic Stroke	
Table XLIX. Randomized Clinical Trials Comparing Transcranial Laser Therapy for Stroke	108
Table L. Randomized Clinical Trials Comparing Early Versus Delayed Initiation of Treatment for Blood Pressure Reduction in Patients with Acute Ischemic Stroke	
Table LI. Deleted	
Table LII. Deleted	
Table LIII. Randomized Clinical Trials of Nutrition	
Table LIV. Nonrandomized Trials, Observational Studies, and/or Registries of Oral Hygiene	119
Table LV. Randomized Clinical Trials of Oral Care	122
Table LVI. Randomized Clinical Trials Comparing Deep Vein Thrombosis Prophylaxis	
Table LVII. Nonrandomized Studies of Depression Screening in Patients with Acute Ischemic Stroke	130
Table LVIII. Randomized Clinical Trials of Mobility Intervention.	131
Table LIX. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke	
Table LX. Randomized Clinical Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction	
Table LXI. Deleted.	
Table LXII. Deleted	
Table LXIII. Deleted	
Table LXIV. Deleted	
Table LXV. Deleted	
Table LXVI. Deleted	
Table LXVII. Deleted	
Table LXVIII. Deleted	
Table LXIX. Deleted	
Table LXX. Deleted	
Table LXXI. Deleted	
Table LXXII. Deleted	139

able LXXIII. Deleted
able LXXIV. Deleted
able LXXV. Deleted
able LXXVI. Deleted
able LXXVII. Nonrandomized Studies of Early Secondary Prevention in Patients with Acute Ischemic Stroke
able LXXVIII. Deleted
able LXXIX.Deleted143
able LXXX.Deleted143
able LXXXI.Deleted143
able LXXXII. Deleted143
able LXXXIII. Original Wording of Recommendations Reworded from Previous Guidelines and Statements
eferences

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR;	Summary Conclusions
Year Published			& 95% CI)	Comments
Ojike N, et al. ¹⁷	Study type: Survey	Inclusion criteria:	1° end point: Assess stroke knowledge and likelihood of	Stroke awareness varied by
2016 27478680	Size: N=36,697	National Health	calling 911	race/ethnicity, sex and region/location
21410000	SIZE. IN-30,097	Interview Survey	Results:	but not by level of education or
		Exclusion criteria:	 Age-adjusted stroke awareness was 66% 	insurance coverageStroke awareness lowest for
		N/A	 Stroke awareness lowest for Hispanics, Blacks and those 	Hispanics, Blacks and those residing
			residing in the Western United States; least recognized stroke	in the Western United States.
			symptom was sudden severe headache	
Schwartz J, et	Study type: Registry	Inclusion criteria:	1° end point: EMS response time	There are opportunities for
al. ³³⁶		911 calls for patients	· ···· · · · · · · · · · · · · · · · ·	improvement in EMS stroke
2016	Size: N=184,179	≥18 y with an EMS	Results:	recognition and response times
<u>26953776</u>		provider impression of	Median EMS response time (911 call to ED arrival) was 36	
		stroke	(IQR, 28.7–48.0) min	
			 On-scene time (15 min) was the largest component of this 	
		Exclusion criteria:	time	
		N/A	• Longer times were noted for patients aged 65–74 y, of white	
	0 () (race, females, and non-urban areas	
Mochari-	Study type:	Inclusion criteria: Get With the	1° end point: Association of race/ethnicity and EMS use	EMS use differs by race ethnicity and
Greenberger H, et al. ¹⁹	Observational study	Guidelines	among stroke patients	gender
2015	Size: N=398,798	Hospitalized Stroke	Results:	
26268882	0120.11 000,700	Cases	• 59% of all patients used EMS	
			White women were most likely to use EMS (62%), and	
		Exclusion criteria:	Hispanic men least likely (52%)	
		N/A		
Berglund A, et	Study type:	Inclusion criteria:	1° end point: PPV for discharge diagnosis of stroke/TIA	Better stroke identification tools are
al. ²¹	Observational study	Dispatch EMS stroke		needed in the prehospital setting
2014	C : N. 000	activation	Results:	
<u>24576912</u>	Size: N=900	Exclusion criteria:	• PPV for a discharge diagnosis of stroke/TIA was 51% (95%	
		N/A	CI, 47–54%) for dispatch and 58% (95% CI, 52-64%) in	
			ambulance	
			• Positive FAST increased PPV to 56% (95% CI: 52–61%) for dispatch and 73% (95% CI, 66–80%) for ambulance	
		1	uspator and 75% (95% CI, 00-00%) for ambulance	

Table I. Nonrandomized Studies of Stroke Awareness and Emergency Medical Services Use

			• Positive FAST also found in 44% of non-stroke by dispatch and a negative FAST in up to 17% of true dispatch stroke cases	
De Luca A, et al. ²² 2013	Study type: Cross- sectional observational study	Inclusion criteria: Dispatch EMS stroke activation	1° end point: PPV of EMS dispatchers' ability to recognize stroke/TIA with CPSS	Better stroke identification tools are needed in the prehospital setting
<u>24330761</u>	Size: N=21,760	Exclusion criteria: N/A	Results: • 9791 of 21760 dispatch cases were confirmed as stroke on scene	
			• PPV of the dispatch stroke/TIA symptoms identification was 34.3% (95% CI, 33.7–35.0), and sensitivity was 64.0% (95% CI, 63.0–64.9)	
Ekundayo OJ, et	Study type:	Inclusion criteria:	Centers using CPSS had higher PPV and sensitivity 1° end point: EMS use by stroke patients	Interventions aimed at increased
al. ¹⁸	Observational study	Get With the	The ind point . ENIS use by shoke patients	EMS use should target at-risk
2013	,	Guidelines	Results: EMS transport was independently associated with:	populations, particularly young and
<u>23633218</u>	Size: N=204,591	Hospitalized Stroke Cases	• Earlier arrival (onset-to-door time, ≤3 h; adjusted OR, 2.00; 95% CI,1.93–2.08)	minority race/ethnic populations
		Exclusion criteria:	 Prompt ER evaluation (more patients with door-to-imaging time, ≤25 min; OR, 1.89; 95% CI, 1.78–2.00) 	
		N/A	• More rapid treatment (more patients with door-to-needle time, ≤60 min; OR, 1.44; 95% CI, 1.28–1.63)	
			 More patients eligible to be treated with tissue-type 	
			plasminogen activator if onset is ≤2 h (67% vs. 44%; OR, 1.47; 95% CI, 1.33–1.64).	
Lin CB, et al. ²³ 2012	Study type: Observational study	Inclusion criteria: Get With the	1° end point: Evaluation and treatment times	EMS prenotification is associated with improved and timelier treatment, and
22787065	e been valiental etaaly	Guidelines	Results:	initiatives to improve prenotification
	Size: N=371,988	Hospitalized Stroke	 Prenotification occurred in 67% of EMS transports 	rates should be implemented
		Cases Transported by EMS	• Patients with EMS prenotification were more likely to be treated with alteplase within 3 h (82.8% vs. 79.2%, P<0.0001)	
		Exclusion criteria: N/A	• Patients with EMS prenotification had shorter door-to-imaging times (26 min vs. 31 min, <i>P</i> <0.0001), shorter door-to-needle times (78 min vs. 80 min, <i>P</i> <0.0001), and shorter symptom	
			onset-to-needle times (141 min vs. 145 min, P<0.0001)	

Abbreviations: CI indicates confidence interval; CPSS, Cincinnati Prehospital Stroke Scale; EMS, emergency medical services; FAST, Face, Arm, Speech, Time test; h, hour; min, minute; N/A, not available; OR, odds ratio; PPV, positive predictive value; and TIA, transient ischemic attack. Literature search topic: Public education, EMS assessment and management: recognize stroke, call 911.

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SWIFT Boden-Albala B, et al. ²⁰ 2015 <u>26069259</u>	Aim: "Determine whether a culturally tailored, interactive educational program in a racially and ethnically diverse high risk population, aimed at stroke awareness and emergency treatment will lead to increased stroke knowledge, behavioral change and improved time to arrival to the ED upon onset of stroke symptoms." Study type: Single-center RCT Size: N=1193	Inclusion criteria: Ischemic stroke or TIA, patients >18 y and living in a household with a telephone Exclusion criteria: Unable to give informed consent; discharged to long term nursing home, or requiring 24-h care; mRS >4 at baseline; severe aphasia limiting comprehension; pre-stroke dementia history, or end stage disease resulting in probable mortality ≤1 y	Intervention: Two interactive multimedia educational group sessions (N=601) Comparator: Standard stroke care and treatment, as well as the distribution of stroke pamphlets in English and Spanish designed by the American Heart Association (N=592)	 1° end point: Recurrent event rates, early arrival at recurrent event, and stroke knowledge: At baseline, 28% arrived at the ED within 3 h Over 5 y, 224 (19%) participants experienced a recurrent event 40% of the interactive intervention group vs. 46% of the enhanced education group arrived within 3 h (<i>P</i>=0.33) The interactive intervention group had greater stroke knowledge at 1 mo (OR, 1.63; 95% CI, 1.23–2.15) Safety end point: N/A 	N/A	Underpowered to detect impact of intervention on earlier arrival times and education provided to both groups may have enhanced knowledge in the "non- intervention" group	A multi-media approach to stroke education and awareness is feasible. More work is needed to impact subsequent be- havior to improve early arrival after stroke onset.
KIDS Morgenstern LB, et al. ³³⁷ 2007 <u>17885255</u>	Aim: "Increase the correct identification of stroke signs and symptoms and encourage immediate contact with emergency medical	Inclusion criteria: CCISD 6 th graders Exclusion criteria: Non-6 th	Intervention: 12 h of classroom instruction in 6 th , 7 th , and 8 th graders; parents were educated	 1° end point: Pre- and post-test on stroke knowledge: Knowledge of stroke pathophysiology improved 	N/A	 High loss to follow-up Parents not directly educated 	An educational intervention may improve stroke knowledge in children. A multi- pronged

Table II. Randomized Clinical Trials for Improving Stroke Awareness

 services (calling 911)	grader, non	through	in intervention students		approach with
when these signs and	CCISD student	homework	from 29% to 34% correct,		education
symptoms were detected"		assignments	whereas control students		dedicated to
		(N=294 kids,	changed from 28% correct		parents/adults is
Study type: RCT		N=256 parents)	to 25%		warranted to
			 Stroke symptom 		improve overall
Size: N=573 kids, N=462		Comparator:	knowledge improved from		societal stroke
parents		Schools that did	28% correct to 43% in		knowledge
		not receive the	intervention students, and		
		intervention	25% correct to 29% in		
		(N=279 kids,	control		
		N=206 parents)	 For a witnessed stroke, 		
			intervention students		
			improved their correct		
			answers from 36% to 54%		
			whereas control changed		
			from 32% correct to 34%		
			 Parental response rate 		
			was not testable due to		
			poor response rate		
			Sefety and nainty N/A		
 nou COICD in diagtas Corrus Christi I			Safety end point: N/A		

Abbreviations: CCISD indicates Corpus Christi Independent School District; ED, emergency department; h, hour; mRS, modified Rankin Scale; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk; TIA, transient ischemic attack, and y, years. **Literature search topic**: Public education, EMS assessment and management: recognize stroke, call 911.

Table III. Nonrandomized Trials, Observational Studies, and/or Registries of Prediction Value of National Institutes of Health Stroke Scale

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Fonarow GC, et al. ⁶⁵ 2012 <u>23130117</u>	Study type: Retrospective cohort (GWTG-Stroke Registry) Size: N=33102 AIS patients	Inclusion criteria: GWTG-Stroke Registry inclusion and Medicare Part A claim data with AIS at centers w ≥25 AIS between 2003–07	 1° end point: All-cause mortality within 30 d Results: There was a strong graded relation between increasing NIHSS score and higher 30-d mortality The 30-d mortality rates for acute ischemic stroke by NIHSS categories were as follows: 0–7, 4.2%; 8–13, 13.9%; 14–21, 31.6%; 22–42, 53.5% 	The NIHSS provides substantial prognostic information regarding mortality within the first 30 d among Medicare beneficiaries with AIS

Lyden P, et al. ⁶⁴ 2009 <u>19520998</u>	Study type: Observational Size: 8214 NIHSS score ratings	with NIHSS documented Exclusion criteria: N/A Inclusion criteria: Convenience sample Exclusion criteria: N/A	 A model with NIHSS alone provided excellent discrimination whether included as a continuous variable (c- statistic 0.82; 0.81 to 0.83), 4 categories (c-statistic 0.80; 0.79–0.80), or 3 categories (c-statistic 0.79; 0.78–0.79) End Points: Rater agreement on NIHSS score assessed using unweighted kappa statistic for multiple raters and intra- class correlation coefficient Results: Individual NIHSS test item scoring agreement ranged from 0.15 (ataxia) to 0.81 (LOC item 1c) with agreement being similar across all subgroups and venues of raters. Overall total NIHSS score intra-class correlation coefficient across all subgroups and venues was 0.85 (95% Cl, 0.72– 0.90) with no clinically meaningful differences between rater specialty and setting 	 NIHSS training and certification using DVD is valid and reliable among general users with remarkable consistency across different venues Reliability assessments of novice users were similar to what was found using experienced stroke centers No differences in the ICC of the total NIHSS were identified when used by neurologists, emergency physicians, or nurses Agreement across various settings was similar and generally moderate
SITS-MOST Wahlgren N, et al. ⁶¹ 2008 <u>18927461</u>	Study type: Post hoc subgroup analysis of a prospective, open, monitored, observational study Size: N=6483	Inclusion criteria: See SITS-MOST Exclusion criteria: Same	1° end point: Symptomatic intracerebral hemorrhage, mortality and independency (mRS 0–2 at 3 mo post-stroke) Results: In the multivariable analysis, older age, high blood glucose, high NIHSS score and current infarction on imaging scans were related to poor outcome in all parameters	to excellent • Stroke severity at baseline as measured by NIHSS score and functional disability before current stroke appeared to be strongest predictors for mortality and rate of independence at 3 mo • The association between NIHSS scores and symptomatic ICH (SITS- MOST definition) was not linear
Josephson SA, et al. ⁶³ 2006 <u>16888381</u>	Study type: Retrospective observational Size: N=7405 unique raters	Inclusion criteria: Convenience sample Exclusion criteria: N/A	 End Points: Rater agreement on overall NIHSS score; determination of passing scores on examination; individual questions assessed using unweighted and modified kappa statistics Results: Greater mean NIHSS scores were associated with greater scoring variance Nurses (RNs) demonstrated less variance from the most common response compared to other professions (<i>P</i><0.0001) 	 Substantial variability was found in total NIHSS score for the videotape vignettes; the author suggests this was due to problems with the test itself, rather than poorly performing raters High agreement was found on many items in the NIHSS

			 Observed agreement on individual NIHSS elements ranged from 0.697 (aphasia) to 0.995 (LOC item 1c) Modified kappa ranged from 0.596 (aphasia) to 0.993 (LOC 1c) 	
NINDS t-PA Stroke Study Frankel MR, et al. ⁶⁰ 2000 <u>11061250</u>	Study type: Post hoc subgroup analysis of the placebo group of a randomized, double-blind, placebo controlled trial Size: N=312	Inclusion criteria: See NINDS t-PA Stroke Study Exclusion criteria: Same	 1° end point: Outcome was measured with four stroke rating scales administered 3 mo after treatment Results: Baseline variables that predicted a poor outcome were NIHSS score >17 plus atrial fibrillation, yielding a PPV for poor outcome of 96% (95% CI, 88–100); at 24 h the best predictor was an NIHSS score >22 (PPV 98%; 95% CI, 93–100), and at 7–10 d the best predictor was NIHSS >16 (PPV 92%; 95% CI, 85–99) 	Baseline NIHSS strongly predicts long-term outcome in stroke patients
Adams HP Jr, et al. ⁵⁹ 1999 <u>10408548</u>	Study type: Post hoc subgroup analysis of a randomized, double-blind, placebo controlled trial Size: N=1281	Inclusion criteria: See Trial of ORG 10172 in Acute Stroke Exclusion criteria: Same	 1° end point: Outcomes assessed at 7 d and 3 mo using the Barthel Index and Glasgow Outcome Scale Results: Baseline NIHSS score strongly predicted outcome, with one additional point on the NIHSS decreasing the likelihood of excellent outcome at 3 mo by 17% 	Baseline NIHSS strongly predicts long-term outcome in stroke patients
NINDS t-PA Stroke Trial Subgroup Analysis NINDS t-PA Stroke Study Group ⁵⁸ 1997 <u>9368551</u>	Study type: Post hoc subgroup analysis of a randomized, double-blind, placebo controlled trial Size: N=624 subjects	Inclusion criteria: See NINDS t-PA Stroke Study Exclusion criteria: Same	 1° end point: Outcome was measured with four stroke rating scales administered 3 mo after treatment Results: No pretreatment information significantly affected patients' response to alteplase (all <i>P</i>>0.05) Outcome was related to age-by-deficit severity interaction, diabetes, age-by-blood pressure interaction, and early CT findings 	 No patient subgroups with differential response to alteplase could be identified Older patients with severe deficits (high NIHSS) were less likely to do well in the long term compared to those younger or with less severe deficits; however, these patients still benefited from t-PA treatment

Abbreviations: AIS indicates acute ischemic stroke; CI, confidence interval; GWTG, Get With The Guidelines; ICH, intracerebral hemorrhage; ICC, intraclass correlation coefficient; LOC, level of consciousness; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NINDS, National Institute of Neurological Disorders; PPV, positive predictive value; OR, odds ratio; and RN, registered nurse.

Literature search topic: Emergency evaluation: benefit of stroke scale use

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Carrera D, et al. ³³⁸ 2017 <u>27720525</u>	Study type: Reanalysis of observational data Size: N=341	Inclusion criteria: Previously enrolled in original RACE derivation Exclusion criteria: No prehospital RACE score available	 1° end point: Receiver operating characteristics of test performance Results: Seven simpler versions of RACE scale derived Original RACE scale had an AUC of 0.82 for detecting LVO The 7 simpler RACE versions generated slightly lower AUC for detecting LVO 	 The use of simplified versions of the original RACE scale reduced performance No direct comparison to other scores was feasible, and biases of patient selection in the original cohort persist
Kim JT, et al. ³³⁹ 2017 <u>28087807</u>	Study type: Secondary analysis of prospective data from the FAST-MAG trial Size: N=1632	Inclusion criteria: Confirmed cerebrovascular disease, transported by EMS and enrolled in FAST-MAG Exclusion criteria: Non-FAST-MAG transports	 1° end point: Correlation of prehospital LAMS with early ED NIHSS Results: ED LAMS score correlated with concurrently performed NIHSS in all cerebrovascular cases (r=0.89) Prehospital LAMS correlated moderately with ED NIHSS (r=0.49) Although the ED LAMS correlated moderately with 3-month mRS, r=0.55, the association of prehospital LAMS with 3-month mRS was less strong (r=0.34) 	 LAMS score correlates well with NIHSS and outcomes when performed in the ED but only moderately when performed by prehospital personnel This paper did not address the utility of LAMS for LVO detection and triage
McMullan JT, et al. ³⁴⁰ 2017 <u>28121225</u>	Study type: Observational study Size: N=58	Inclusion criteria: Prehospital suspected stroke (FAST-positive), C- STAT scored, and transported to a comprehensive stroke center or having a stroke team consult note Exclusion criteria: FAST-negative	1° end point: C-STAT sensitivity and specificity Results: C-STAT sensitivity and specificity for each outcome were: • NIHSS≥ 15, 77% (95% CI, 46–95) and 84% (95% CI, 69– 93) • NIHSS≥10, 64% (95% CI, 41–83) and 91% (95% CI, 76– 98) • LVO, 71% (95% CI, 29–96) and 70% (95% CI, 55–83)	 Among FAST-positive prehospital suspected stroke patients, C-STAT could be readily performed and incorporated into the prehospital workflow The small study sample size and regional restriction preclude meaningful conclusions on test characteristics for predicting LVO to inform prehospital triage

Table IV. Nonrandomized Studies of Emergency Medical Services Use of Prehospital Stroke Severity Scales

Abbreviations: AUC indicates area under the receiver operating characteristic curve; CI, confidence inter\val; C-STAT, Cincinnati Stroke Triage Assessment Tool; ED, emergency department; EMS, emergency medical services; FAST, Face Arm Speech Time algorithm; LAMS, Los Angeles Motor Scale; LVO, large vessel occlusion; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; and RACE, Rapid Arterial Occlusion Evaluation. Literature search topic: Public Education, EMS assessment and management: recognize, call 911

Table V. Deleted Table VI. Deleted

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; 95% CI)	Summary/Conclusion Comment(s)
Xian Y, et al. ³⁶ 2017 <u>28096207</u>	Study type: Retrospective, observational study of 888 hospitals. Size: 16,901 patients with AIS treated with alteplase within 4.5h of onset.	Inclusion criteria: Patients receiving IV alteplase within 4.5 hours of symptom onset between June 2014 and April 2015. Exclusion criteria: N/A	 <u>1° endpoint</u>: No primary endpoint declared. Door-to-needle times for alteplase administration determined along with survey assessing extent which hospitals were using the Target:Stroke interventions to reduce DTN times and quantify the association. <u>Results:</u> Median DTN time for alteplase administration was 56 minutes (IQR 42-75). 59.3% of patients received IV alteplase within 60 minutes. 30.4% of patients were treated within 45 minutes. 16 strategies were associated with significant reductions in DTN times. 	 Median DTN times of less than 60 minutes were achievable in a majority of patients. The achievement of DTN times within 45 minutes is feasible in a substantial proportion of patients.
Fonarow GC, et	Study type:	Inclusion criteria:	<u>1° endpoint</u> :	 Implementation of the
al. ³⁵	Retrospective,	Patients receiving	No primary endpoint declared. Door-to-needle times for	Target:Stroke quality improvement
2014	observational study	guideline concordant	alteplase administration; in-hospital all-cause mortality;	initiative was associated with
<u>24756513</u>	with pre-/post- Target:Stroke	intravenous alteplase at GWTG-Stroke	discharge status determined.	improved timeliness of tPA delivery.
	intervention design	participating hospitals	<u>Results:</u>	

Table VII. Nonrandomized Studies of Hospitals Achieving Rapid Door-to-Needle Times for IV Alteplase in Stroke

	using GWTG hospital convenience sample <u>Size</u> : 71,169 patients with AIS treated with tPA (27,319 pre- intervention period, 43,850 post- intervention period) at 1,030 Get With The Guidelines- Stroke participating hospitals (52.8% of total)	from April 2003 to Sept 2013. <u>Exclusion criteria</u> : N/A	 Median DTN time for tPA administration declined from 77 minutes (IQR, 60-98 minutes) during the pre-intervention period to 67 minutes (IQR, 51-87 minutes) during the post-intervention period (<i>P</i> < .001). The DTN times for tPA administration of 60 minutes or less increased from 26.5% (95% CI, 26.0%-27.1%) of patients during the pre-intervention period to 41.3% (95% CI, 40.8%-41.7%) during the post-intervention period (<i>P</i><.001) 	Median hospital door-to-needle target times of less than 60 minutes were achievable in over 50% of cases.
Sauser K, et al. ³⁴¹ 2014 <u>25023407</u>	Study type: Retrospective, observational study of 25 hospitals. Size: 1193 patients with AIS treated with alteplase within 4.5h of onset.	Inclusion criteria: Patients receiving IV alteplase within 4.5 hours of symptom onset between Jan 2009 and Dec 2012. Exclusion criteria: N/A	 <u>1° endpoint</u>: Continuous measure of DTN time, in minutes, from emergency department arrival to thrombolytic delivery. <u>Results:</u> Mean (SD) DTN time for alteplase administration was 82.9 minutes (35.4). Median time was 76 minutes. 28.7% of patients received IV alteplase within 60 minutes. 	 In this study, mean and median DTN times exceeded 60 minutes in a clear majority of patients. Approximately one-quarter of patients were treated within 60 minutes.

Abbreviations: CI indicates confidence interval; DTN, Door-to-Needle; HR, hazard ratio; IQR, interquartile range; N/A, not available; OR, odds ratio; and RR, relative risk. Literature search topic: Achieving rapid door-to-needle treatment time in stroke

Study Acronym; Author;	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) /	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; &	Relevant 2° End Point (if any)	Study Limitations; Adverse	Summary Conclusions Comments
Year Published			Study Comparator (# patients)	95% CI)	any	Events	Comments
INSTINCT Scott PA, et al. ³⁸ 2013 23260188	Aim: To test a multilevel intervention to increase community hospital alteplase use Study type: Multicenter cluster RCT using matched-pair design Size: N= 24 hospitals	Inclusion criteria: Adult, non-specialty, acute-care, community hospitals in Michigan with ≥ 100 stroke patients/y Exclusion criteria: Academic comprehensive stroke centers; hospitals with >100,000 ED visits per year	Intervention: Standardized, barrier- assessment, multicomponent intervention (n=12) Comparator: No intervention (n=12)	 1° end point: From preto post-intervention periods, alteplase use increase in intervention group hospitals (59/5882 [1.00%] to 191/7288 [2.62%]) was significantly greater than control group (65/5957 [1.09%] to 120/6989 [1.72%]); RR, 1.68; 95% CI, 1.09–2.57; <i>P</i>=0.02. Safety end point: Total symptomatic intracranial hemorrhage within 36 h occurred in 24/404 [5.9%]; total mortality was 62/557 [11.1%]; between group differences were NS (<i>P</i>=0.84) 	The difference was not significant in the comparison based on the mixed-effects Poisson model (RR 1.37, 95% CI $0.96-1.93$; P=0.08;	One hospital pair was excluded from analysis due to conversion to academic comprehensive stroke center mid-trial	 The pragmatic INSTINCT multilevel intervention modestly increased alteplase use in target group community hospital EDs Identified safety of alteplase use in community EDs with sufficient numbers to ensure precise safety metrics
PRACTISE Dirks M, et al. ³⁹ 2011 <u>21393587</u>	Aim: To test a multidimensional implementation strategy to increase alteplase use Study type: Multicenter, cluster-randomized controlled trial using matched pair design Size: N=5515 patients admitted with stroke (12	Inclusion criteria: Convenience sample 12 hospitals Exclusion criteria: None listed	Intervention: Intervention meetings based on Breakthrough Series model (n=6 hospitals) Comparator: No intervention (n=6 hospitals)	1° end point: Intervention hospitals treated 393 (13.1% of all patients with acute stroke) vs. 308 (12.2%) at control hospitals, adjusted OR, 1.25 (95% CI, 0.93–1.68) Safety end point: Symptomatic intracranial hemorrhage rate was 5.6% (intervention) vs.	Among the 1657 patients with ischemic stroke admitted within 4 hours from onset, 391 (44.5%) of 880 in the intervention centers were treated with thrombolysis	The intensive intervention may not be generalizable to all hospital settings as it included forming local teams consisting of a stroke neurologist and stroke nurse	The PRACTISE intervention increased the proportion of stroke patients treated with alteplase

Table VIII. Randomized Clinical Trials Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use

hospitals); 2990 in 6 intervention hospitals, 2525 in 6 control hospitals	4.6% (control); RR, 1.08; 95% CI, 0.83–1.43	and 305 (39.3%) of 777 in the control centers (
		adjusted OR, 1.58 (95% CI, 1.11-2.27).	

Abbreviations: CI indicates confidence interval; ED, emergency department; HR, hazard ratio; NS, not significant; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk. Literature search topic: Increasing alteplase treatment in stroke

Table IX. Nonrandomized Studies Comparing Efficacy of Multilevel Interventions to Increase Intravenous Alteplase Use

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Ganesh A, et al. ³³ 2016 <u>26850979</u>	Study type: Retrospective cohort analysis Size: N=319,972	Inclusion criteria: Patients with stroke (ischemic or hemorrhagic) or TIA admitted to acute care hospitals in Canada in fiscal years 2003/2004 to 2013/2014 Exclusion criteria: Patients hospitalized in Quebec province because complete data were not available	 1° end point: Crude 30-day mortality Results: Crude 30-day mortality rate decreased from 15.8% in 2003/2004 to 12.7% in 2012/2013 in provinces with stroke systems, while remaining 14.5% in provinces without such systems Starting with the fiscal year 2009/2010, there was a clear reduction in relative mortality in provinces with stroke systems vs. those without, sustained at aIRR of 0.85 (95% CI, 0.79–0.92) in the 2011/ 2012, 2012/2013, and 2013/2014 fiscal years The surveys indicated that facilities in provinces with such systems were more likely to care for patients on a stroke unit, and have timely access to a stroke prevention clinic and telestroke services 	 First demonstration of population- wide reduction in mortality from stroke systems of care Could not account for the potential effects of concurrent interventions, such as stroke specialist training programs and variability in adherence to national best practices recommendations The outcome of 30-day mortality in the study may not reflect other clinical outcomes of interest, like 90- d or longer-term mortality
Fonarow GC, et al. ³⁵ 2014 <u>24756513</u>	Study type: Target: Stroke intervention (multi- modal), pre-post design, convenience sample Size: N=71,169	Inclusion criteria: • Patients with AIS treated with alteplase • GWTG hospital Exclusion criteria: • Not treated with alteplase	 1° end point: DTN times for alteplase administration of ≤60 min Results: Median DTN time for alteplase administration declined from 77 min (IQR: 60–98 min) during the preintervention period to 67 min (IQR: 51–87 min) during the postintervention period (<i>P</i><0.001) 	• Implementation of a national quality improvement initiative was associated with improved timeliness of alteplase administration following AIS on a national scale, and this improvement was associated with lower in-hospital mortality and intracranial hemorrhage, along with

		 Transferred from another facility Had stroke while in hospital 	• DTN times for alteplase administration ≤60 min increased from 26.5% (95% CI, 26.0%–27.1%) of patients during the preintervention period to 41.3% (95% CI, 40.8%-41.7%) during the postintervention period (<i>P</i> <0.001)	 an increase in the percentage of patients discharged home Study limitations included convenience sample; lack of concurrent control; potential unmeasured confounders; retrospectively collected data
van Wijngaarden JD, et al. ³⁴² 2011 <u>21613273</u>	Study type: Prospective observational cohort Size: N=5515	Inclusion criteria: • Patients age>18 y admitted with acute stroke • Symptom onset ≤24 h before admission Exclusion criteria: N/A	 1° end point: Treatment with thrombolysis or not as measured by proportion of stroke patients admitted within 24 h of symptom onset treated with thrombolysis Results: The unadjusted multilevel logistic regression shows a significant association between thrombolysis rates and availability of intramural protocols (OR, 1.46; 95% CI, 1.12–1.91) After adjusting for hospital size and teaching vs. non-teaching hospitals, the strength of the association increased (adjusted OR, 1.77; CI, 1.30–2.39) 	 Intramural protocols are important tools to increase thrombolysis rates for acute ischemic stroke in hospitals The study was carried out at 12 sites
Jeng JS, et al. ³⁴³ 2009 <u>19362319</u>	Study type: Multicenter national Taiwan stroke center survey Size: Survey sent to 17 medical centers/69 regional teaching hospitals in 2004, and 19 medical centers/97 regional teaching hospitals in 2006	Inclusion criteria: Qualified medical centers and regional teaching hospitals in Taiwan Exclusion criteria: N/A	 1° end point: Factors influencing administration of thrombolytic therapy were analyzed Results: The frequency of thrombolytic therapy administration significantly correlated with stroke center criteria (Spearman's rho=0.731, <i>P</i><0.001) Multivariate analysis showed routine IV alteplase protocol in the ED (OR, 4.6; <i>P</i>=0.042) and supervision by the stroke center director OR, 3.7; <i>P</i>=0.031) significantly influenced the administration of thrombolytic therapy 	Well-organized stroke centers, routine use of thrombolytic therapy protocols in the emergency room, and guidance by a stroke center director are important for enhancing thrombolytic therapy in patients with acute ischemic stroke
Douglas VC, et al. ³⁴⁴ 2005 <u>15699369</u>	Study type: Retrospective multicenter study Size: N=16,853 patients (34 academic medical centers)	Inclusion criteria: Patients admitted with ischemic stroke Exclusion criteria: Patients <18 y were excluded from analysis of alteplase	 1° end point: In-hospital mortality rate Results: None of the 11 major stroke center elements was associated with decreased in-hospital mortality or increased frequency of discharge home In-hospital mortality rate was 6.3% (n=1062), and 2.4% (n=399) of patients received alteplase 	 Four elements predicted increased alteplase use, including written care protocols, integrated EMS, organized EDs, and continuing medical/public education in stroke (each OR>2.0, P<0.05) Use of alteplase also tended to be greater at centers with an

				acute stroke team, a stroke unit, or rapid neuroimaging (each OR>2.0, <i>P</i> <0.10)
Asimos AW, et al. ³⁴⁵ 2004 <u>15064210</u>	Study type: Retrospective registry review of single community teaching hospital Size: N=255	Inclusion criteria: • History and physical exam consistent with acute stroke Exclusion criteria: • Age≤18 y • Stroke onset >2 h prior to triage And many others	 1° end point: Descriptive Results: Over a 56-month period, CSP activation occurred 255 times, with 24% (n=60) of patients treated with IV alteplase Within 36 h of IV alteplase treatment, 10% (NINDS=6%) of patients (n=6) sustained a sICH Treatment protocol violations occurred in 32% of IV alteplase-treated patients but were not significantly associated with sICH (Fisher's exact test, P>0.05) Three mo after IV alteplase treatment, 60% of patients had achieved an excellent neurologic outcome based on Barthel Index ≥95 (NINDS=52%), while mortality measured 12% (NINDS=17%) 	 ED-directed CSPs are a feasible and effective means to screen AIS patients for treatment with thrombolysis There were multiple study limitations

Abbreviations: aIRR indicates adjusted incidence rate ratio; AIS, acute ischemic stroke; CI, confidence interval; CSP, code stroke protocol; DTN, door-to-needle; ED, emergency department; EMS, emergency medical services; GWTG, American Heart Association's Get with the Guideline; h, hour; IQR, interquartile range; IV, intravenous; min, minutes; NINDS, National Institute of Neurological Disorders and Stroke; OR, odds ratio; and sICH, symptomatic intracerebral hemorrhage.

Literature search topic: Increasing alteplast treatment in stroke AND Achieving rapid door-to-needle treatment time in stroke AND Benefit of participation in QI registry

Table X. Randomized Clinical Trials of Level of Agreement Between Central Read and Spoke Radiologists and Hub Neurologists in Interpreting Head Computed Tomography Scans of Stroke Patients Presenting to Telestroke Hospitals

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Spokoyny I, et al. ⁴⁴ 2014 <u>23697761</u>	Aim: To determine the agreement levels between central read and each of two groups, spoke radiologists and hub vascular neurologists, on head CT scans of stroke patients	Inclusion criteria: Acute stroke syndrome Exclusion criteria:	Intervention: Telemedicine arm: CT interpretation by hub vascular neurologist and central read (n=130)	1° end point: Level of agreement between central read and spoke radiologists and hub neurologists in interpreting	Vascular neurologist and spoke radiologist percent agreement with central read in the presence of normal scan (74.6%,77.1%), acute stroke (74.6%,77.9%), ICH (99.2%, 98.5%), SAH	• Low incidence of secondary end points that resulted in less opportunity to assess differences between groups	Reports from neurologists and spoke radiologists had excellent reliability in identifying radiologic

	Study type: Pooled RCTs Size: N=261	Time >12 h, incarceration	Comparator: Telephone arm CT interpretation by spoke radiologist and central read (n=131)	head CT scans of stroke patients presenting to telestroke hospitals: overall agreement (95.4%; κ=0.74; 95% CI, 0.59– 0.88) Safety end point: N/A	(98.5%, 96.9%), subdural hematoma (100%, 100%), tumor (100%, 97.7%), and hyperdense artery (93.8%, 88.5%)	Bias in favor of the interpreting vascular neurologist	contra- indications to IV alteplase • These pooled findings demonstrated that telestroke evaluation of head CT scans for acute stroke assessments were reliable
Puetz V, et al. ⁴⁵ 2013 <u>23255831</u>	Aim: To determine the reliability and therapeutic impact of standardized cerebral CT evaluation by telestroke neurologists Study type : retrospective cohort study of prospectively collected data Size: N=536	Inclusion: Acute stroke syndrome patients Exclusion: NA	NA	NA	The neuroradiologists detected discrepant CT findings in 43 patients (8.0%) that were rated as clinically relevant in 9 patients (1.7%).	Retrospective study design and interpretation bias	Clinically relevant mis- interpretations of the CT scans were rare in an acute telestroke service
Demaerschalk BM, et al. ⁴³ 2012 <u>22984007</u>	Aim: To determine the agreement levels between neuroradiologists and each of 2 groups, spoke radiologists and telestrokologists, on baseline brain CT scan of acute stroke patients Study type: RCT Size: N=54	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine Arm: CT interpretation by spoke radiologist and hub neuroradiologist (n=27) Comparator: Telephone-only Arm: CT interpretation by telestrokologist and	1° end point: Level of agreement between central read and spoke radiologists and hub neurologists in interpreting head CT scans of stroke patients presenting to telestroke hospitals: overall	Spoke radiologist and telestrokologist percent agreement with hub neuroradiologist in the presence of normal scan (85%, 89%), acute stroke (81%, 73%), chronic stroke (63%, 85%), edema (78%, 77%), tumor (96%, 100%), hyperdense artery (93%, 92%)	 Small number of subjects Concern about applicability of the findings to real world of acute head CT interpretation in patients Bias in favor of the interpreting telestrokologist 	In the context of a telestroke network designed to assess patients with acute stroke syndromes, agreement over the presence or absence of radiological contraindication s to IV alteplase was excellent whether the

	neuroradiologist (n=26)	agreement 91.0% Safety end point:		comparisons were between a telestrokologist and neuroradiologist or between spoke
				spoke radiologist and
				neuroradiologist

Abbreviations: CI indicates confidence Interval; CT, computed tomography; h, hours; ICH, intracerebral hemorrhage; IV, intravenous; N/A, not available; RCT, randomized clinical trial; and SAH, subarachnoid hemorrhage. Literature search topic: Telestroke and Teleradiology

Table XI. Randomized Clinical Trials Comparing Synchronous Audio Video Telemedicine to Telephone-Only for Acute Ischemic Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
STRokEDOC Pooled Analysis Demaerschalk BM, et al. ⁴⁶ 2012 22400970	Aim: To assess whether telemedicine or telephone consultation was superior for acute stroke decision making Study type: Meta-analysis of RCTs Size: N=276	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine (n=138) Comparator: Telephone (n=138)	1° end point: Correct thrombolysis decision making: 96% vs. 83%, OR, 4.2 (95% CI, 1.7– 10.5; <i>P</i> =0.002) Safety end point: N/A	Alteplase use rate 29% vs. 24% (OR, 1.27; 95% CI, 0.71– 2.25; <i>P</i> =0.41), 90 d Bl 46% vs. 45% (OR, 0.69; 95% CI, 0.41– 1.16; <i>P</i> =0.167), 90 d mRS 36% vs. 38% (OR, 0.70; 95% CI, 0.41-1.19; <i>P</i> =0.201), ICH rate 8% vs. 6% (<i>P</i> >0.999)	Underpowered to detect differences in 90 d functional outcome	Pooled analysis supported the hypothesis that telemedicine consultations, compared with telephone only, resulted in more accurate decision making

STRokEDOC AZ TIME Demaerschalk BM, et al. ³⁴⁶ 2010 20431081	Aim: To assess the efficacy of telemedicine and telephone consultations for acute stroke decision making Study type: RCT Size: N=54	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine (n=27) Comparator: Telephone (n=27)	 1° end point: Correct thrombolysis decision making: 85% vs. 89% (<i>P</i>>0.99) Safety end point: N/A 	• Thrombolytic use rate 30% vs. 30% (<i>P</i> >0.99), 90 d Bl 59% vs. 58% (<i>P</i> =0.77), 90 d mRS 46% vs. 38% (<i>P</i> =0.61), ICH rate 4% vs. 0% (<i>P</i> >0.99)	Trial was not designed to detect a difference between telemedicine and telephone only modes of consultation	 Not designed to have sufficient power to detect a difference Feasibility RCT Technical problems were frequent
STRokEDOC Meyer BC, et al. ³⁴⁷ 2008 <u>18676180</u>	Aim: To compare telemedicine to telephone consultations for assessing decision making in acute stroke Study type: RCT Size: N=222	Inclusion criteria: Acute stroke syndrome Exclusion criteria: Time >12 h, incarceration	Intervention: Telemedicine (n=111) Comparator: Telephone (n=111)	1° end point: Correct thrombolysis decision making: 98% v 82%, OR: 10.9 (95% CI, 2.7–44.69; <i>P</i> =0.0009) Safety end point: N/A	• Alteplase use- rate 28% vs. 23% (OR,1.3; 95% CI, 0.7–2.5; <i>P</i> =0.4248), 90 d BI (OR, 0.6; 95% CI, 0.4–1.1; <i>P</i> =0.1268), 90 d mRS (OR, 0.6; 95% CI, 0.3–1.1; <i>P</i> =0.0898), ICH rate 7% vs. 8% (OR, 0.8; 95% CI, 0.1–6.3; <i>P</i> =1.0)	 Increase in alteplase use not measured Absence of placebo comparator, resulting in underestimating the true benefit of telemedicine Lack of complete reproducibility between telephone practice in "real world" and the trial 	 First trial to establish the benefit of telemedicine over telephone specifically for acute medical decision-making Stopped early for superiority

Abbreviations: BI indicates Barthel Index; CI, confidence interval; h, hours; ICH, intracerebral hemorrhage; mRS, modified Rankin Scale; N/A, not available; OR, odds ratio; RCT, randomized clinical trial.

Literature search topic: Telestroke and Teleradiology

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% CI)	Summary Conclusions Comments
Barlinn J, et al. ⁴⁹ 2017 <u>27899742</u>	Study type: Retrospective review of consecutively collected cases Size: N=151	Inclusion criteria: Patients with intracranial large vessel occlusion who underwent endovascular	1° end point: Baseline characteristics, onset-to-treatment times, symptomatic intracranial hemorrhage, in-hospital mortality, reperfusion (modified Treatment in Cerebral Infarction 2b/3), and favorable functional outcome Results: Transferred patients were younger (<i>P</i> =0.020),	• Telestroke networks may enable delivery of endovascular treatment to selected ischemic stroke patients transferred from remote hospitals that is equitable to patients admitted directly to tertiary hospitals.
	48 (31.8%) patients were transferred after teleconsultation and 103 (68.2%) were primarily admitted to our emergency department.	treatment presenting either via telestroke network or directly Exclusion criteria: NA	received more frequently intravenous tissue plasminogen activator (P =0.008), had prolonged time from stroke onset to endovascular treatment initiation (P <0.0001) and tended to have lower rates of symptomatic intracranial hemorrhage (4.2% vs. 11.7%; P =0.227) and mortality (8.3% vs. 22.6%; P=0.041) than directly admitted patients. Similar rates of reperfusion (56.2% vs. 61.2%; P =0.567) and favorable functional outcome (18.8% vs. 13.7%; P =0.470) were observed in telestroke patients and those who were directly admitted.	
Kepplinger J, et al. ⁴⁷ 2016 <u>27566746</u>	Study type: Systematic review and meta-analysis Size: 7 studies totaling 1,863 patients	Inclusion criteria: studies which evaluate the safety and efficacy of IV thrombolysis (IVT) with tissue plasminogen activator (tPA) delivered through telestroke networks in patients with acute ischemic stroke. Exclusion criteria: NA	 1° end point: functional independence, SICH, mortality Results: Symptomatic intracerebral hemorrhage rates were similar between patients subjected to telemedicine-guided IVT and those receiving tPA at stroke centers (risk ratio [RR], 1.01; 95% CI, 0.37-2.80; <i>P</i>=0.978) with low evidence of heterogeneity (I(2), 37%; <i>P</i>=0.189). There was no difference in mortality (RR, 1.04, 95% CI, 0.74-1.48; <i>P</i>=0.806) or in functional independence (RR, 1.11; 95% CI, 0.78-1.57; <i>P</i>=0.565) at 3 mo between telemedicine-guided and stroke center thrombolysis. No heterogeneity was identified (I(2), 0%; <i>P</i>=0.964 and I(2), 52%; <i>P</i>=0.123, respectively). 	• IV tPA delivery through telestroke networks is safe and effective in the 3-h time window.

Table XII. Nonrandomized Trials, Observational Studies, and/or Registries of Telestroke for Triaging Patients for Endovascular Therapy

Abbreviations: CI indicates confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; and RR, relative risk. **Literature Search:** Telestroke and Teleradiology

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Fong, WC, et al. ⁴⁸ 2015 <u>25906936</u>	Study type: Retrospective Comparative Cohort Study Size: N=152	Inclusion criteria: Patients with stroke treated with IV alteplase by telephone with teleradiology compared with patients treated by in- person assessment Exclusion criteria: N/A	 1° end point: clinical outcomes, sICH, mortality Results: Excellent clinical outcome achieved by 52% of telephone group vs 43% of the neurologist on-site group (<i>P</i>=0.30) Symptomatic intracranial hemorrhage 4.0% vs 4.9% (<i>P</i>=1.0) Mortality 8.3 vs 11.9% (<i>P</i>=0.49) 	 Telephone consultation and teleradiology-guided IV alteplase administration appeared safe and effective Limitations: small sample size, non-randomized design

Table XIII. Nonrandomized Trials, Observational Studies, and/or Registries of Alteplase Decision-Making via Telephone Consultation

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; 95% CI)	Summary/Conclusion Comment(s)
Ganesh A, et	Study type:	Inclusion	<u>1° endpoint:</u>	 A sustained decrease in
al. ³³	Retrospective,	criteria:	Summary statistics used to describe all patient and stroke resource information.	30-day in-hospital mortality
2016	cohort analysis	All patients with	Multivariable generalized linear Poisson regression model constructed for 30-day	over time was identified in
<u>26850979</u>	using Canadian	stroke (ischemic	in-hospital mortality included the following predictors: presence or absence of a	Canadian provinces with
	Institute of Health	or hemorrhagic)	stroke system, fiscal years of discharge, common prognostic variables (age, sex,	integrated stroke systems of
	Information's	or TIA admitted	stroke type and comorbid conditions). Comparison of adjusted incidence rate	care compared to provinces
	Discharge	to Canadian	ratio (aIRR) for each single fiscal year, estimated from the model, compared	without such systems.
	Abstract	acute care	provinces with stroke systems of care vs. those without.	These data demonstrate
	Database	hospital		an association between

	(excludes Province of Quebec) from 2003/04 to	(excluding Quebec) <u>Exclusion</u>	Results: • Overall crude 30-day mortality rate decreased from 15.8% in 2003/04 to 12.7% in 2013/14 in the provinces with stroke care systems, while remaining constant at 14.5% in provinces without such systems.	integrated stroke systems of care and population-wide reduction in acute stroke mortality.
	2012/13 combined with surveys of stroke care resources in Canadian hospitals in 2009 (n = 309) and 2013 (n = 601).	<u>criteria</u> : N/A	 Relative mortality rate (aIRR) was 0.85 (95% CI, 0.79-0.92) in 2013/14 in provinces with stroke care systems vs those without. Prior to 2010/11, there was no clear difference in stroke mortality between provinces with or without stroke care systems. 	
Query Quert	Size: Cohort of 319,972 hospitalized stroke/TIA patients.	hada sing		
Song S, et al. ⁵⁷ 2016 <u>27079809</u>	Study type: Retrospective, observational matched cohort study using difference-in- differences design. Changes in outcomes at hospitals joining GWTG-Stroke	Inclusion criteria: Hospitals implementing GWTG-Stroke between 2003 and 2008 and matched hospitals that did not during the same period.	 <u>1° endpoint</u>: Primary clinical outcomes analyzed functional status; mortality measures; Secondary outcomes included length of stay and readmission measures. <u>Results:</u> Adjusted Comparison of Change (Difference-in-Differences) on Discharge Home/Mortality Outcomes From Run-Up, Early, or Sustained vs Pre Period Between at Get With The Guidelines-Stroke Hospitals vs at Matched Non–Get With The Guidelines-Stroke Hospitals (HR = Hazard Ratio) 	• Hospital adoption of the GWTG-Stroke program was associated with improved functional outcomes at discharge and reduced post- discharge mortality.
	program were compared with non-joining matched hospitals.	<u>Exclusion</u> <u>criteria</u> : N/A	DischargeRUN-UPEARLYSUSTAINEDhome/MortalityHR95%PHR95%POutcomesCIvalueCIvalueCIvalue	

	Size: Matching		Discharge Home	1.07	1.00- 1.14	.06	1.08	1.01- 1.16	0.02	1.06	1.00- 1.12	0.06	
	algorithm		30d Mortality	0.97	0.90-	0.48	0.92	0.86-	0.04	0.96	0.90-	0.16	
	identified 366		1-year Mortality	1.00	1.05 0.94-	0.92	0.89	0.99	0.0001	0.92	1.02 0.88-	0.0005	
	GWTG-Stroke		T your workancy	1.00	1.05	0.02	0.00	0.95	0.0001	0.02	0.97	0.0000	
	adopting hospitals that												
	cared for 88,584												
	AIS admissions												
	and 366 non-												
	GWTG-Stroke												
	hospitals that												
	cared for 85,401												
	AIS admissions												
Fonarow	Study type:	Inclusion	1° endpoint:										Implementation of the
GC, et al. ³⁵	Retrospective,	criteria:	No primary end	point d	eclared	l. Door-i	to-need	dle time	es for alte	plase	adminis	stration;	Target:Stroke quality
2014	observational	Patients	in-hospital all-ca							•			improvement initiative was
<u>24756513</u>	study with pre-	receiving					•						associated with improved
	/post-	guideline	Results:										timeliness of tPA.
	Target:Stroke	concordant	 Median DTN t 	ime fo	r tPA ac	dministr	ation d	eclined	l from 77	minute	es (inte	rquartile	
	intervention	intravenous	range [IQR], 60-	-98 miı	nutes) c	luring th	ne pre-	intervei	ntion per	iod to 6	67 minu	ites	 This improvement was
	design using	alteplase at	(IQR, 51-87 min	utes) o	during t	he post	-interve	ention p	period (P	<.001)	The D	TN	associated with lower in-
	GWTG hospital	GWTG-Stroke	times for tPA ad	Iminist	ration o	f 60 mir	nutes o	or less i	ncreased	from 2	26.5%	(95% CI,	hospital mortality and
	convenience	participating	26.0%-27.1%) c			•			•	to 41.	3% (95	% CI,	intracranial hemorrhage,
	sample	hospitals from	40.8%-41.7%) d	luring	the pos	t-interve	ention p	period (P<.001)				along with an increase in the
	e : 74.400	April 2003 to											percentage of patients
	<u>Size</u> : 71,169	Sept 2013.	 In-hospital all- 					-	-				discharged home.
	patients with AIS	Evolucion	the post-interve										
	treated with tPA	Exclusion	[OR], 0.89; 95%									-	
	(27,319 pre- intervention	<u>criteria</u> : N/A	within 36 hours		-	•	•						
	period, 43,850		adjusted OR, 0.					'		-			
	post-intervention		frequent (37.6%	o vs 42	.1%; ad	ijusted	JR, 1.'	14; 95%	o CI, 1.09	9-1.19;	P<.00'	1).	
	period) at 1,030												
	Get With The												
	Guidelines-												

Stroke	
participating	
hospitals (52.8%	
of total)	

Abbreviations: CI indicates confidence interval; HR, hazard ratio; N/A, not available; OR, odds ratio; and RR, relative risk.

Literature search topic: Benefit of participation in QI registry

Table XV. Nonrandomized Trials, Observational Studies, and/or Registries of Computed Tomography and Magnetic Resonance Imaging for Routine Stroke Care

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Wardlaw J, et al. ⁶⁹ 2014 <u>24791949</u>	Study type: Cost-effectiveness of MRI, including DWI, in patients with transient ischemic attack and minor stroke; a systematic review, meta-analysis and economic evaluation; decision- analytic model of stroke prevention including on a 20-y time horizon including nine representative imaging scenarios Size: Nine key scanning strategies were assessed in the modelling exercise	Inclusion criteria: Patients with a TIA or minor ischemic stroke/stroke mimics presenting within a few hours who are not being treated with statins and antiplatelet drugs Exclusion criteria: None provided	 1° end point: The primary outcome was the incremental cost-effectiveness of MR scanning compared with CT for the whole population Results: Compared with "CT scan all patients" MRI was more expensive and no more cost-effective, except for patients presenting at >1 wk after symptoms to diagnose hemorrhage "One-stop" CT/MRI angiographic-plus-brain imaging was not cost-effective 	 Magnetic resonance with DW-MRI is not cost-effective for secondary stroke prevention for TIA and minor stroke MRI was most helpful in patients presenting at >1 wk after symptoms if blood-sensitive sequences were used Rapid specialist assessment, CT brain scanning, and identification of serious underlying stroke causes is the most cost-effective stroke prevention strategy
Brazzelli M, et al. ⁶⁸ 2009	Study type: Review	Inclusion criteria: Studies that either compared DW-MRI	1° end point: Sensitivity and specificity for detection of acute ischemic stroke	Further well-designed studies without methodological biases, in more representative patient

<u>19821415</u>	Size: N=308 patients (8 studies)	and CT in the same patients for detection of ischemic stroke or examined the utility of MRI for detection of hemorrhagic stroke, had imaging performed within 12 h of stroke onset, and presented sufficient data to allow construction of contingency tables	Results: DW-MRI appears to be more sensitive than CT for the early detection of ischemic stroke in highly selected patients; however, the variability in the quality of included studies and the presence of spectrum and incorporation biases render the reliability and generalizability of observed results questionable	samples, with practicality and cost estimates are now needed to determine which patients should undergo MRI and which CT in suspected acute stroke
		Exclusion criteria: Studies that focused on patients presenting exclusively with a clinical syndrome suggesting either subarachnoid hemorrhage or isolated intraventricular hemorrhage; studies that: addressed specific anatomical,		
		metabolic, microvascular, or volumetric aspects of stroke; focused on specific technical aspects of CT and MRI; analyzed perfusion versus diffusion imaging differences in patients with acute cerebral ischemia		

Wardlaw JM, et al. ⁷⁰ 2004 <u>15459431</u>	Study type: Decision tree representing acute stroke care pathways populated with data from multiple sources; determined the effect of diagnostic information from CT scanning on functional outcome, length of stay, costs, and quality of life during 5 y for 13 alternative CT strategies (varying proportions and types of patients and rapidity of scanning)	Inclusion criteria: Data were obtained from many sources including systematic reviews of: (1) the accuracy of clinical diagnosis of stroke; (2) CT scan diagnosis (stroke vs. not stroke and infarct from hemorrhage); (3) antithrombotic drugs for primary treatment and secondary prevention of ischemic stroke and after intracranial hemorrhage; and (4) thrombolysis	 1° end point: Cost and QALYs Results: The most cost-effective strategy was "scan all immediately" (£9 993 676 and 1982.4 QALYs) The least cost-effective was "scan patients on anticoagulants and those in a life-threatening condition immediately and the rest within 14 d" (£12 592 666 and 1931.8 QALYs) "Scan no patients" reduced QALYs (1904.2) and increased cost (£10 544 000) 	 Immediate CT scanning is the most cost-effective strategy For the majority of acute stroke patients, increasing independent survival by correct early diagnosis, ensuring appropriate subsequent treatment and management decisions, reduced costs of stroke and increased QALYs
	Size: The primary analysis was conducted for a cohort of 1000 patients aged 70–74 y and repeated for 1000 patients aged 60–64 y and 80–84 y in teaching urban and rural general hospitals	Exclusion criteria: Subarachnoid hemorrhage		

Abbreviations: CT indicates computed tomography; DWI, diffusion-weighted imaging; h, hour; MRI, magnetic resonance imaging; N/A, not available; QALY, quality-adjusted life year; TIA, transient ischemic attack; and y, year. Literature search topics: Cost-effectiveness of CT/MRI in acute stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Aghaebrahim A, et al. ⁷⁴ 2017 <u>27048957</u>	Study type: Prospective, single- center, observational pre- and post- workflow optimization Size: N=286	Inclusion criteria: Patients with anterior circulation LVO with baseline CT showing an ASPECTS of ≥6 or mismatch between infarct and threatened but viable brain who were treated with endovascular therapy April 2012 to July 2014 Exclusion criteria: No time of onset	 1° end point: Door-to-CT Results: Pre-optimization, median 14 min (IQR, 6–28) Post-optimization, median 11 min (IQR, 5–22) 	Median 11-min door-to-CT achieved
Lees KR, et al. ⁷³ 2016 <u>27507856</u>	Study type: Pooled analysis of 9 RCTs of IV alteplase Size: N=6756	exclusion Inclusion criteria: Various by trial Exclusion criteria: Various by trial	2° end point: Time to treatment interaction with benefit Results: Treatment initiation within 4.5 h was associated with statistically significant net benefit, 55 patients (95% CI, 13–91) per 1000 treated were better with alteplase (<i>P</i> =0.004), with earlier treatment resulting in bigger proportional benefits	The earlier the treatment with IV alteplase, the greater the benefit
Messe SR, et al. ⁷⁵ 2016 <u>27629092</u>	Study type: Multicenter, retrospective analysis of Get With the Guidelines database (2003–2011) Size: N=61,698	Inclusion criteria: Within 2 h of onset of ischemic stroke Exclusion criteria: Documented contraindication to thrombolysis	 1° end point: Door-to-image time Results: Received alteplase, median 20 min (IQR, 13–30) Did not receive alteplase, median 40 min (IQR, 23–65) 	Median 20-min door-to-image achieved
Rai AT, et al. ³⁴⁸ 2016 <u>26863106</u>	Study type: Prospective, single- center, observational	Inclusion criteria: Endovascular	1° end point: ER to CT Results:	Mean 26-min door-to-CT achieved

Table XVI. Observational Studies of 2016 Door-to-Computed Tomography Times

	pre- and post- workflow optimization	patients presenting to ER	Pre-optimization, mean 42±8 min; post-optimization, mean 26±13 min (mean±SD)	
	Size: N=94	Exclusion criteria: In-house patients undergoing an intervention for stroke, patients undergoing another procedure in the hospital with a stroke and patients treated with unknown symptom onset		
Saver JL, et al. ³² 2016 <u>27673305</u>	Study type: Pooled analysis of 5 RCTs of endovascular treatment with second-generation devices Size: N=1287	Inclusion criteria: Various by trial Exclusion criteria: Various by trial	1° end point: Degree of disability at 3 mo Results: The degree of treatment benefit declined with longer times from symptom onset to expected arterial puncture	The earlier the treatment with mechanical thrombectomy, the greater the benefit
Zaidi SF, et al. ⁷⁶ 2016 <u>27342763</u>	Size: N=1267 Study type: Prospective, observational before and after EMS training and ED protocols in two hospitals Size: N=251	Inclusion criteria: All Stroke Alert and RACE alert patients January 1–December 31, 2015 Exclusion criteria: >12 h since onset	 1° end point: Arrival-to-CT Results: Pre-intervention, median 15 min (IQR, 7–17) Post-intervention, median 8.5 min (IQR, 6–15) 	Mean 8.5 min door-to-CT achieved

Abbreviations: ASPECTS indicates Alberta Stroke Program Early CT Score; CI, confidence interval; CT, computed tomography; ED, emergency department; EMS, emergency medical services; ER, emergency room; h, hours; min, minutes; IQR, interquartile range; IV, intravenous; LVO, large vessel occlusion; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and SD, standard deviation.

Literature search topic: Door-to-imaging times achievable

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Charidimou A, et al. ⁸² 2016 <u>27491738</u>	Study type: Meta- analysis of baseline CT in NINDS rt-PA, ECASS I & II, IST-3 Size: N=2234	Inclusion criteria: For individual trials Exclusion criteria: For individual trials	 1° end point: mRS>2 at 90 d or Oxford Handicap Score at 6 mo Results: Statistically significantly lower risk of poor outcome with IV alteplase for patients with leukoaraiosis (OR, 0.75; 95% CI, 0.60–0.95) 	Statistically significantly lower risk of poor outcome with IV alteplase for patients with leukoaraiosis (OR: 0.75, 95% CI: 0.60–0.95) in pooled analysis of NINDS rt-PA, ECASS I & II, and IST-3
IST-3 IST-3 Collaborative Group ⁷⁷ 2015 <u>25819484</u>	Study type: Pooled analysis of baseline imaging in NINDS rt- PA, ECASS II, PROACT II, IST-3 Size: N=4567	Inclusion criteria: For individual trials Exclusion criteria: For individual trials	1° end point: Good functional outcome Results: No statistically significant subgroup difference (<i>P</i> =0.94) for IV alteplase effect on functional outcome for ASPECTS subgroups (0–7 vs. 8–10)	No statistically significant subgroup difference (<i>P</i> =0.94) for IV alteplase effect on functional outcome for ASPECTS subgroups (0–7 vs. 8– 10) in pooled analysis of NINDS rt- PA, ECASS II, PROACT II, IST-3
IST-3 IST-3 Collaborative Group ⁷⁷ 2015 <u>25819484</u>	Study type: Analysis of baseline CT or MRI in IST-3 Size: N=3017	Inclusion criteria: IST-3 Exclusion criteria: ISt-3	 1° end point: Oxford Handicap Score at 6 mo Results: No statistically significant interactions (all <i>P</i>>0.20) for IV alteplase with function outcome for: Acute ischemic change Swelling Tissue attenuation change Lesion size Old lesions Leukoaraiosis 	No statistically significant interactions (all <i>P</i> >0.20) between baseline imaging × effect of IV alteplase in IST-3
NINDS rt-PA Demchuk AM, et al. ⁷⁸ 2008 <u>18560214</u>	Study type: Analysis of baseline CT in NINDS rt-PA Trial Size: N=788	Inclusion criteria: NINDS rt-PA Exclusion criteria: NINDS rt-PA	 1° end point: mRS 0–1 at 90 d Results: Van Swieten Score for leukoaraiosis × IV alteplase interaction: <i>P</i>=0.528 	No statistically significant interaction $(P=0.528)$ between baseline Van Swieten Score for leukoaraiosis \times effect of IV alteplase in NINDS rt-PA Trial
ECASS II Dzialowski I, et al. ⁷⁹	Study type: Analysis of baseline CT in ECASS II	Inclusion criteria: ECASS II	1° end point: mRS 0–2 at 90 d Results: ASPECTS × IV alteplase interaction: <i>P</i> =0.29	No statistically significant interaction (<i>P</i> =0.29) between baseline

Table XVII. Randomized Clinical Trials of Interaction of Baseline Imaging Computed Tomography Hypodensity with Treatment Effect for Intravenous Alteplase

2006 16497977	Size: N=603	Exclusion criteria: ECASS II		ASPECTS × effect of IV alteplase in
NINDS rt-PA		Inclusion criteria:	40 and a sint. Foundable subserve at 2 ms	ECASS II No evidence of treatment effect
Demchuk AM, et	Study type: Analysis of baseline CT in	NINDS rt-PA	1° end point: Favorable outcome at 3 mo	modification by the baseline
al. ⁸⁰	NINDS rt-PA Trial		Results: ASPECTS × IV alteplase interaction: "no	ASPECTS value in the NINDS rt-PA
2005		Exclusion criteria:	evidence"	Stroke Study
<u>16166579</u>	Size: N=616	NINDS rt-PA		
NINDS rt-PA	Study type: Analysis	Inclusion criteria:	1° end point: Favorable outcome at 3 mo	No statistically significant interaction
Patel SC, et al.81	of baseline CT in	NINDS rt-PA		(P=0.52) between baseline CT early
2001	NINDS rt-PA Trial		Results: Adjusted early ischemic change × IV alteplase	ischemic change × effect of IV
<u>11735758</u>		Exclusion criteria:	interaction, P=0.52	alteplase in NINDS rt-PA Trial
	Size: N=616	NINDS rt-PA		

Abbreviations: ASPECTS indicates Alberta Stroke Program Early CT Score; CI, confidence interval; CT, computed tomography; IV, intravenous; MRI, magnetic resonance imaging; N/A, not available; NINDS, National Institute of Neurological Disorders; and OR, odds ratio. Literature search topic: CT attenuation IV alteplase interaction; CT attenuation IAT interaction

Table XVIII. Randomized Clinical Trials of Interaction of Baseline Computed Tomography Hyperdense Middle Cerebral Artery Sign with Treatment Effect for Intravenous Alteplase

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (P value; OR or RR; & 95% Cl)	Summary Conclusions Comments
IST-3 Mair G, et al. ⁸⁴ 2016 <u>26658907</u>	Study type: Analysis of baseline CT in IST3 Size: N=2961	Inclusion criteria: IST-3 Exclusion criteria: IST-3	1° end point: Oxford Handicap Score at 6 moResults: No significant interaction with benefit of alteplase, <i>P</i>=0.167	No statistically significant interaction P =0.167) between baseline HMCAS \times effect of IV alteplase in IST-3 Trial
IST-3 IST Collaborative Group ⁷⁷ 2015 <u>25819484</u>	Study type: Analysis of baseline imaging in IST3 Size: N=3017	Inclusion criteria: IST-3 Exclusion criteria: IST-3	1° end point: Oxford Handicap Score at 6 mo Results: No interaction between hyperattenuated arteries and IV alteplase for function outcome (<i>P</i> =0.517)	No statistically significant interaction (P =0.517) between baseline hyperattenuated artery × effect of IV alteplase in IST-3 Trial
NINDS rt-PA Qureshi Al, et al. ⁸³ 2006 16636232	Study type: Analysis of baseline CT in NINDS rt-PA Size: N=616	Inclusion criteria: NINDS rt-PA Exclusion criteria: NINDS rt-PA	1° end point: mRS 0–1, NIHSS 0–1, Barthel Index ≥95, GOS 0–1, death at 90 days	No statistically significant interaction between baseline HMCAS \times effect of IV alteplase in NINDS rt-PA Trial (<i>P</i> >0.30)

	Results: No statistically significant HMCAS × treatment interaction for any of the four clinical scales or death (all	
	<i>P</i> >0.30)	

Abbreviations: CT indicates computed tomography; GOS, Glasgow Outcome Scale; HMCAS, hyperdense middle cerebral artery sign; IV, intravenous; NIHSS, National Institutes of Health Stroke Scale; and NINDS, National Institute of Neurological Disorders. Literature search: CT attenuation IV alteplase interaction; Hyperdense MCA IV alteplase interaction

Table XIX. Observational Studies of Interaction of Baseline Magnetic Resonance Imaging of Cerebral Microbleeds with SymptomaticIntracerebral Hemorrhage After Intravenous Alteplase

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
META- MICROBLEEDS Charidimou A, et al. ⁸⁵ 2016 27629086	Study type: Systematic review and analysis of 8 studies Size: N=2601	Inclusion criteria: 1) Defined and assessed sICH risk or 3- to 6-month functional outcome in patients with acute ischemic stroke treated with IV alteplase thrombolysis and (2) quantified this risk in relation to the presence of CMBs detected on pretreatment MRI scans Exclusion criteria Studies of patients treated with endovascular therapies were only included in the post hoc subanalysis; in cases of multiple publications from the same or overlapping cohorts, only the report with the largest sample size was used in the analysis	1° end point: sICH Results: • sICH with CMBs: 6.1% (38/624) vs. sICH w/o CMBs: 4.4% (87/1977), OR, 2.18; 95% Cl, 1.12–4.22	sICH statistically significantly more common in those with CMBs (OR, 2.18; 95% CI, 1.12–4.22) but no more common than in NINDS rt-PA Trial
Tsivgoulis G, et al. ⁸⁶	Study type: Systematic review	Inclusion criteria: Studies of incidence	1° end point: sICH	 sICH statistically significantly more common in those with CMBs (OR:

2016	and analysis of 9	of sICH after IV	Results:	2.36, 95% CI: 1.21–4.61), but no
<u>27088650</u>	studies	alteplase in patients	• sICH with CMBs: 6.5% (38/581) vs. sICH w/o CMBs: 4.4%	more common than in NINDS rt-PA
		with and without	(87/1898), OR, 2.36; 95% CI, 1.21–4.61)	Trial
	Size: N=2479	cerebral microbleeds	• sICH with 1–10 CMBs, 6.1% (21/343) vs. sICH with >10	 sICH with >10 CMB 40% but
		on pre-Rx MRI	CMBs, 40% (6/15), OR, 7.01; 95% CI, 3.20–15.38	occurred only in 15/1808 (0.8%)
		Exclusion criteria:		
		IST-3		
NINDS rt-PA	Study type:	Inclusion criteria:	2° end point: sICH withni 36 h	• sICH 6.4% vs. 0.6%, but still
Study	Randomized, double-	Acute ischemic		overall clinical benefit at 3 mo
NINDS rt-PA	blinded controlled	stroke with treatment	Results:	
Study Group ⁸⁷	trial	possible within 3 h of	 sICH with alteplase 6.4% 	
1995		onset	• sICH w/o alteplase 0.6%	
<u>7477192</u>	Size: N=624		'	
		Exclusion criteria:		
		NINDS rt-PA		

Abbreviations: CI indicates confidence interval; CMB, cerebral microbleed; h, hours; IV, intravenous; MRI, magnetic resonance imaging; NINDS, National Institute of Neurological Disorders; OR, odds ratio; and Rx, treatment; sICH, symptomatic intracerebral hemorrhage; and w/o, without. Literature search topic: Hyperdense MCA IV alteplase interaction II; Interaction of baseline MRI microbleeds with IV alteplase

Table XX. Randomized Clinical Trials of Intravenous Thrombolytics Employing Multimodal Imaging

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
DIAS 3 Albers GW, et al. ¹⁶⁸ 2015 <u>25937443</u>	Aim: Assess the safety and efficacy of desmoteplase between 3 h and 9 h after symptom onset in patients with occlusion or high-grade stenosis in major cerebral arteries Study type: Phase III RCT Size: N=492	Inclusion criteria: AIS 3– 9 h, 18-85, NIHSS 4–24, occlusion or stenosis of M1, M2, ACA, PCA; mRS 0–1 Exclusion criteria: Pre- stroke mRS >1, standard criteria	Intervention: IV desmoteplase 90 mcg/kg (n=247) Comparator: Placebo (n=245)	1° end point: mRS 0–2 at day 90: desmoteplase 51%, placebo 50%; (adjusted OR, 1.20; 95% CI, 0.79–1.81; <i>P</i> =0.40) Safety end point: SAEs, sICH	 SAEs: desmoteplase 27%, placebo 29% sICH 3% vs. 2% 	N/A	No benefit, no safety concerns

ATTEST Huang X, et al. ⁸⁹ 2015 25726502	Aim: Assess the efficacy and safety of tenecteplase vs. alteplase within 4.5 h of stroke onset in a population not selected on the basis of advanced neuroimaging Study type: Phase II RCT Size: N=104	Inclusion criteria: AIS <4.5 h; baseline CT, CTP, CTA Exclusion criteria: Standard criteria	Intervention: IV tenecteplase 0.25 mg/kg (n=52) Comparator: IV alteplase 0.9 mg/kg (n=52)	1° end point: Penumbral salvage: alteplase 68% (23%), tenecteplase 68% (28%), <i>P</i> =0.81 Safety end point: sICH: tenecteplase 6%, alteplase 8%, <i>P</i> =0.59	Recanalization: alteplase 74%, tenecteplase 66%, <i>P</i> =0.38	N/A	Not designed to prove imaging selection hypothesis; no difference in neurologic or radiologic outcomes
IST III Wardlaw JM, et al. ³⁴⁹ 2014 <u>25642519</u>	Aim: To determine if CT or MR perfusion or angiography (CTP/CTA; MRP/MRA) imaging provide important information to guide the use of rt-PA up to 6 h after a stroke Study type: Observational study of IST-3 Size: N=151 with perfusion imaging, N=423 with vessel imaging	Inclusion criteria: AIS, age≥18 y, <6 h to treatment Exclusion criteria: Standard alteplase exclusions	Intervention: IV alteplase 0.9 mg/kg (n=NR) Comparator: Standard care (NR)	 1° end point: Oxford Handicap Score 0–2 at 6 mo Safety end point: Hemorrhage Neither perfusion lesion size nor mismatch modified rt-PA effect on hemorrhage or 6-month outcome. rt-PA effects did not differ between patients with angiographic occlusion compared with those without 	N/A	N/A	No evidence that imaging biomarkers of mismatch or vessel occlusion modified alteplase treatment effects
Parsons M, et al. ⁹¹ 2012 <u>22435369</u>	Aim: To compare IV tenecteplase vs. IV alteplase enhanced by imaging selection Study type: Phase IIB RCT Size: N=75	Inclusion criteria: AIS <6 h, CTA vessel occlusion Exclusion criteria: Standard alteplase exclusions	Intervention: IV tenecteplase 0.1 mg/kg (n=25); IV tenecteplase 0.25 mg/kg (n=25) Comparator: IV alteplase 0.9 mg/kg (n=25)	1° end point: Percent of perfusion lesion reperfused at 24 h: alteplase 55.4 \pm 38.7, tenecteplase 79.3 \pm 28.8, <i>P</i> =0.004; extent of clinical improvement (NIHSS) at 24 h: alteplase 3.0 \pm 6.3, tenecteplase 8.0 \pm 5.5, <i>P</i> <0.001	N/A	N/A	Imaging selection used to identify patients most likely to benefit; not designed to prove selection hypothesis

				Safety end point: Parenchymal hematoma: 4% tenecteplase, 16% alteplase (<i>P</i> =0.09)			
DIAS 2 Hacke W, et al. ⁹² 2009 <u>19097942</u>	Aim: Investigate further the clinical efficacy and safety of desmoteplase in patients with AIS who have tissue at risk, as assessed by MR PI–DWI or perfusion CT Study type: Phase III RCT Size: N=193	Inclusion criteria: AIS 3– 9 h, 18-85, NIHSS 4-24, 20% diffusion- perfusion mismatch (CT or MRI) Exclusion criteria: Pre- stroke mRS>1, standard criteria, ICA occlusion	Intervention: Desmoteplase 90 mcg/kg (n=57); desmoteplase 125 mcg/kg (n=66) Comparator: Placebo (n=63)	1° end point: Day 90 good outcome (composite): 46% placebo, 47% 90 mcg/kg, 36% 125 mcg/kg Safety end point: ICH: 3.5% 90 mcg/kg desmoteplase, 4.5% 125 mcg/kg desmoteplase, 0% placebo	N/A	N/A	No benefit vs. placebo; not designed to prove imaging selection hypothesis
EPITHET Davis SM, et al. ⁹³ 2008 <u>18296121</u>	Aim: Compare reperfusion and infarct growth measures in patients treated with alteplase vs. placebo 3-6 h from onset Study type: Phase II RCT Size: N=101	Inclusion criteria: AIS 3– 6 h, baseline MRI, age≥18 y, NIHSS>4, MRS≤2 Exclusion criteria: Inability to undergo MRI, standard alteplase criteria	Intervention: IV alteplase 0.9 mg/kg (n=52) Comparator: Placebo (n=49)	1° end point: Infarct growth in mismatch patients (geometric mean): alteplase 1.24; placebo 1.78; ratio 0.69; 95% CI, 0.38–1.28; <i>P</i> =0.239 Safety end point: Not reported	 Reperfusion greater in alteplase vs. placebo (P=0.001) and associated with better functional outcome (P=0.01) Infarct growth in mismatch patients (geometric mean: reperfusion 0.79; no reperfusion 2.25; ratio 0.35; 95% Cl, 0.20– 0.63; P=0.001 	Underpowered for no mismatch group	Failed to demonstrate significantly better outcomes in mismatch treated group vs. other groups

DEDAS Furlan AJ, et al. ⁹⁴ 2006 <u>16574922</u>	Aim: Evaluate safety and efficacy of IV desmoteplase in patients with perfusion/diffusion mismatch on MRI 3 to 9 h after onset of acute ischemic stroke Study type: Dose escalation Phase II RCT Size: N=37	Inclusion criteria: AIS 3– 9 h, 18–85 y, NIHSS 4–20, 20% diffusion- perfusion mismatch Exclusion criteria: Standard criteria; ICA occlusion	Intervention: Desmoteplase 90 mcg/kg (N=14); desmoteplase 125 mcg/kg (N=15) Comparator: Placebo (N=8)	1° end point: • Reperfusion 4–8 h: 37.5% placebo, 18.2% 90 mcg/kg, 53.3% 125 mcg/kg • Good outcome (composite) at day 90: 25%, 28.6%, 60%; desmoteplase overall vs. placebo (<i>P</i> =0.022) Safety end point: sICH: none	• Good neurologic outcome in mismatch patients: reperfusion 73%, no reperfusion 27%, <i>P</i> <0.0001 N/A	N/A	Phase II study not powered for clinical end points; not designed to prove penumbral selection hypothesis
DIAS Hacke W, et al. ⁹⁵ 2005 <u>15569863</u>	Aim: Evaluate safety and efficacy of IV desmoteplase in patients with perfusion/diffusion mismatch on MRI 3 to 9 h after onset of acute ischemic stroke Study type: Dose escalation Phase II RCT Size: N=104	Inclusion criteria: AIS 3– 9 h, 18–85 y, NIHSS 4–20, 20% diffusion- perfusion mismatch Exclusion criteria: Prestroke mRS of >1, standard criteria	Intervention: Part 1: desmoteplase 25 mg (n=17), 37.5 mg (n=13), 50 mg (n=13); Part 2: 62.5 mcg/kg (n=15), 90 mcg/kg (n=15), 125 mcg/kg (n=15) Comparator: Placebo Part 1: (n=16); Part 2 (n=11)	 1° end point: Reperfusion 4–8 h: up to 71.4% (P=0.0012) in desmoteplase vs. 19.2% placebo Good outcome (composite) at day 90: Part 2: 22.2% placebo, 13.3%–60% desmoteplase Safety end point: sICH; Part I: halted due to sICH; part 2: 0% placebo, 2.2% desmoteplase 	N/A	Part I: halted due to sICH	Phase II study not powered for clinical end points; not designed to prove penumbral selection hypothesis

Abbreviations: ACA indicates anterior cerebral artery; AIS, acute ischemic stroke; CI, confidence interval; CT, computed tomography; CTA, computed tomography angiography; CTP, computed tomography perfusion; h, hours; ICA, internal carotid artery; IV, intravenous; M1, middle cerebral artery segment 1; M2, middle cerebral artery segment 2; MRI, magnetic

resonance imaging; MR PI-DWI, magnetic resonance perfusion imaging–diffusion-weighted imaging; MRP/MRA, magnetic resonance perfusion/magnetic resonance angiography; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NR, not reported; OR, odds ratio; PCA, posterior cerebral artery; RCT, randomized clinical trial; SAEs, serious adverse events; sICH, symptomatic intracerebral hemorrhage; and y, years. **Literature search topic**: Multimodal imaging

Table XXI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Thrombolytics Employing Multimodal Imaging

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
DEFUSE Albers GW, et	Study type: Single- arm study	Inclusion criteria: AIS 3–6 h, age ≥18	1° end point: FCR	 Single-arm study not designed to determine if MRI profiles can identify
al. ⁸⁸ 2006 17066483	Size: N=74	y, NIHSS>5, MRS≤2, baseline MRI	Results: • FCR in Mismatch with Reperfusion (n=18): 56% (34–75)	clinical responders treated with IV alteplase 3–6 h from onset • Single-arm study not designed to
1100000		Exclusion criteria: Prestroke mRS>2	 FCR in Mismatch without Reperfusion: (n=16): 19% (7–43) FCR in TM with Reperfusion (n=15): 67% (42-84) TM without Reperfusion (n=16): 19% (7-43) 	Single-arm study not designed to prove penumbral selection hypothesis

Abbreviations: AIS indicates acute ischemic stroke; CI, confidence interval; FCR, favorable clinical response; IV, intravenous; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; TM, target mismatch; and y, years Literature search topic: Multimodal imaging

Table XXII. Nonrandomized Trials, Observational Studies, and/or Registries of Creatinine Testing Prior to Contrast Computed Tomography

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Ehrlich ME, et al. ⁹⁶ 2016 <u>27364528</u>	Study type: Retrospective observational study Size: N=289	Inclusion criteria: Acute ischemic stroke patients comparing CTA vs. no CTA Exclusion criteria:	 1° end point: Acute kidney injury and time to IV alteplase, mean creatinine Results: Mean creatinine at 24–48 h: CTA, 1.06; no CTA, 1.40 (<i>P</i>=0.059); acute kidney injury in 5/157 with CTA, 7/132 without CTA (<i>P</i>=0.422) 	CTA was safe, did not delay IV alteplase, and had added clinical value
		Inpatient acute stroke alerts; missing 24–48 h creatinine value		
Aulicky P, et al. ⁹⁷ 2010	Study type: Retrospective	Inclusion criteria: Acute ischemic stroke patients	1° end point: Creatinine increase ≥ 44 micromol/l Results: 3% in CTA group vs. 4% in control (<i>P</i> =0.50)	Contrast agents given for CTA, performed in patients with normal and abnormal creatinine levels,

<u>19965846</u>	observational study with historical control Size: N=241	treated with IV alteplase undergoing CTA vs. control group treated with IV alteplase without CTA Exclusion criteria: Missing creatinine levels, or no CTA performed		neither caused renal injury nor interfered with the safety of alteplase treatment
Lima FO, et al. ⁹⁸ 2010 <u>20044502</u>	Study type: Prospective observational study with retrospective controls. Size: N=918	Inclusion criteria: Acute ischemic stroke patients, non- contrast vs. contrast CT exposure Exclusion criteria: Dialysis-dependent patients	1° end point: 25% increase in creatinine Results: 5% in exposed vs. 10% in non-exposed (<i>P</i> =0.003); no difference in patients with conventional angiography following CTA/CTP vs. CTA/CTP alone (5% vs. 5%, <i>P</i> =0.7)	Administration of a contrast- enhanced CT protocol involving CTA/CTP and conventional angiography in selected patients does not appear to increase the incidence of contrast-induced nephropathy
Hopyan JJ, et al. ⁹⁹ 2008 <u>18719035</u>	Study type: Retrospective observational study Size: N=198	Inclusion criteria: Acute stroke patients undergoing contrast CT Exclusion criteria: GFR<30 ml/min	 1° end point: Contrast-induced nephropathy within 72 h, chronic kidney disease Results: 2.9% developed contrast-induced nephropathy, 0% chronic kidney disease 	Prompt CTA/CTP imaging of acute stroke, if indicated, need not be delayed in those with no history of renal impairment.
Krol AL, et al. ¹⁰⁰ 2007 <u>17600231</u>	Study type: Retrospective observational study Size: N=224	Inclusion criteria: Acute ischemic stroke patients undergoing CTA within 24 h of onset Exclusion criteria: Short-term follow-up creatinine not available	1° end point: Radiocontrast nephropathy Results: 3% developed radiocontrast nephropathy	Low incidence of radiocontrast nephropathy in acute stroke patients undergoing emergency CTA
Josephson SA, et al. ¹⁰¹ 2005	Study type: Retrospective observational study	Inclusion criteria: Patients undergoing	1° end point: Rise in creatinine ≥0.5	Contrast nephropathy incidence is low in neurovascular patients

<u>15911820</u>	Size: N=1075	stroke protocol CTA and CTP imaging	Results: 3.7% without hemodialysis dependency had creatinine increase; 0.37% had contrast nephropathy	
		Exclusion criteria: No pre- or post-study creatinine		

Abbreviations: CTA indicates computed tomography angiography; CT, computed tomography; CTP, computed tomography perfusion; GFR, glomerular filtration rate; h, hours; IV, intravenous; and min, minutes.

Literature search topics: Vessel and collateral status imaging

Table XXIII. Randomized Clinical Trials Comparing Endovascular Therapy

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
DEFUSE 3 Albers GW et al. ¹⁰⁹ 2018	Aim: to test the hypothesis that patients who were likely to have salvageable ischemic brain tissue identified on perfusion imaging and who undergo endovascular therapy 6-16 hours after last known to have been well will have better functional outcomes compared to subjects treated with standard medical therapy. Study type: multi-center, prospective, open-label, blinded end-point RCT Size: N=182 [Stopped early for efficacy at first interim analysis]	Inclusion criteria: Age 18-90 years; NIHSSS ≥ 6; femoral puncture within 6 -16 hours of stroke onset/last known well; pre- morbid mRS2≤2; ICA or M1 occlusion by MRA or CTA AND Target Mismatch Profile on CT perfusion or MRI (ischemic core volume is <70 ml, mismatch ratio is >1.8 and mismatch	Intervention: Mechanical thrombectomy with FDA- approved device (n=92) Comparator: Medical management according to 2013 AHA/ASA guidelines (n=90)	1° end point: mRS shift analysis at 90 d unadjusted OR 2.77; 95% CI, 1.63-4.70; <i>P</i> =0.0002 Safety end point: Mortality at 90 d: 14% vs 26%; <i>P</i> =0.053 sICH: 6.5% vs 4.4%; <i>P</i> =0.75	2° End Point mRS 0-2 at 90 d: 44.6% % vs 16.7%, Relative risk 2.67; 95% Cl 1.60-4.48; <i>P</i> < 0.0001 Subgroup analysis by DAWN eligibility DAWN eligible (n=112) OR 2.66; 95% Cl, 1.36-5.23 Dawn ineligible (n=70)	•Stopped early at first interim analysis, may overestimate treatment effect	•Expands criteria to identify patients who benefit from mechanical thrombectomy after 6 hours

volume is >15	OR 2.96; 95%	
ml)	Cl, 1.26-6.97	
1111/	01, 1.20-0.37	
Exclusion		
criteria: Many,		
similar to IV		
alteplase		
exclusions,		
including BP >		
185/110; treated		
with tPA >4.5		
hours after time		
last known well;		
treated with tPA		
3-4.5 hours after		
last known well		
AND any of the		
following: age		
>80, current		
anticoagulant		
use, history of		
diabetes AND		
prior stroke,		
NIHSS >25;		
ASPECT score		
<6 on non-		
contrast CT;		
Significant mass		
effect with		
midline shift;		
acute		
symptomatic		
arterial		
occlusions in		
more than one		
vascular territory		

DAWN Nogueira RG, et al. ¹⁰⁸ 2017 29129157	Aim: To demonstrate superior functional outcomes at 90 days with stent retriever plus medical management compared to medical management alone in selected patients treated six to 24 hours after last seen well Study type: multi-center, prospective, open-label, blinded end-point RCT Size: N=206 [Stopped early for efficacy at first planned interim analysis]	Inclusioncriteria:Age ≥18;failed orcontraindicatedfor IV t-PA;NIHSS ≥10;Pre-stroke -mRS0-1; Time lastseen well toRandomization:6-24h; <1/3MCA territory byCT or MRI; ICA-TT and/or MCA-M1 occlusion;-Clinical ImagingMismatch:A. ≥80 y/o,NIHSS ≥10 +core <21 mLB. <80 y/o,NIHSS ≥10 +core <31 mLC. < 80 y/o,NIHSS ≥20 +core <51 mLExclusioncriteria: Many,similar to IValteplaseexclusions,including BP >185/110	Intervention: Mechanical thrombectomy with specified stent retriever (n=107) Comparator: Medical management according to respective national guidelines (n=99)	Co-1° end points: 90-day disability assessed by utility weighted mRS: 5.5 +/- 3.8 vs 3.4 +/- 3.1, Adjusted Difference 2.0; 95% Cl, 1.1-3.0, posterior probability of superiority >0.999 mRS 0-2 at 90 d: 49% vs 13%, Adjusted Difference 33%, 95% Cl, 21%-44%, posterior probability of superiority >0.999 Safety end point: Mortality at 90 d: 19% vs 18%, <i>P</i> =1.00 sICH: 6% vs 3%, <i>P</i> =0.50	Subgroups by time: 90-day mRS 0-2 • 6-12 hrs 55.1% vs 20.0%, posterior probability of superiority >0.99 • 12-24 hrs 43.1% vs 7.4%, posterior probability of superiority >0.99	 Stopped early at first interim analysis, may overestimate treatment effect Mostly M1 occlusions: M1 78%/78% ICA 21%/19% M2 2%/3% Few strokes with witnessed onset: Wake up 63%/47% Unwitnesed 27%/38% Witnessed 10%/14% 	•The first RCT evidence of a group identifiable by clinical and imaging criteria who derive benefit from mechanical thrombectomy after 6 hours
---	---	--	---	--	---	---	--

ASTER Lapergue B et al. ¹⁷⁸ 28763550	Aim: To compare efficacy and adverse events using the contact aspiration technique vs the standard stent retriever technique as a first-line endovascular treatment among patients with acute ischemic stroke and large vessel occlusion. Study Type: multi-center, open-label, blinded end- point RCT Size: N=381	Major Inclusion Criteria: Age > 18 years with no upper age limit; Cerebral infarction in the anterior circulation; Occlusion of the anterior circulation proven by CT angiography or MR angiography; With or without previous Intravenous thrombolysis Start of thrombectomy procedure within 6 hours of symptoms onset. Major Exclusion of the cervical carotid artery; mRS > 3 prior to stroke	Intervention: first-line contact aspiration (n = 192) Comparator: first-line stent retriever (n = 189)	 1° end point: proportion of patients with mTICl 2b- 3 at the end of all endovascular procedures: Contact aspiration 85.4% (n=164) vs stent retriever 83.1% (n=157) (odds ratio, 1.20; 95% Cl, 0.68- 2.10; <i>P</i>=.53; difference, 2.4%; 95% Cl, -5.4%- 9.7%). Safety end point: Symptomatic intracranial hemorrhage at 24 h: Contact aspiration 10/188 vs (5.3%) vs stent retriever 12/188 (6.5%) 	 •mRS 0-2 at 90 days, •Contact aspiration 82/181 (45.3%) vs stent retriever 91/182 (50.0%); OR 0.83 (95% CI 0.54-1.26) <i>P</i>= 0.38 •Difference -4.6% (95% CI, -14.7% to 6.1%) 	 Primary end point was technical (successful revasculari- zation after all interventions);tri al was not powered to detect a smaller yet potentially clinically important difference between groups. Given its superiority design to detect a 15% difference in the primary end point, this trial was not designed to establish noninferiority. 	•Among patients with ischemic stroke in the anterior circulation undergoing thrombectomy, first-line thrombectomy with contact aspiration compared with stent retriever did not result in an increased successful revasculari- zation rate at the end of the procedure.
THRACE Bracard S, et al. ¹⁰⁶ 2016 <u>27567239</u>	Aim: To determine whether mechanical thrombectomy in addition to IV thrombolysis improves clinical outcome	Inclusion criteria: Age 18–80 y; IV alteplase <4 h; ET <5 h; NIHSS 10–25; ICA, M1,	Intervention: ET (n=204) Comparator: Standard care -	1° end point: mRS 0–2 at 90 d: 53% vs. 42%, <i>P</i> =0.028 Safety end point:	 TICI 2b/3: 69% Median time to reperfusion: 250 mins (IQR 210– 290) 	Study halted early after MR CLEAN results reported; 3 mo mRS non- blinded; long	For patients with acute ischemic stroke due to anterior circulation, proximal large

	in patients with acute ischemic stroke. Study type: RCT Size: N=414 (halted prematurely)	superior 1/3 basilar Exclusion criteria: Cervical ICA occlusion, subocclusive stenosis, BP > 185/110 and many more	IV alteplase (n=208)	• Death: 12% vs. 13%, <i>P</i> =0.7 • sICH: 2% vs. 2%, <i>P</i> =0.71		duration of trial (5 y) with subsequent protocol evolution	vessel occlusion not selected on the basis of additional imaging criteria endovascular therapy with medical management showed benefit over medical therapy alone
THERAPY Mocco J, et al. ³⁵⁰ 2016 <u>27486173</u>	Aim: To determine if benefit from thrombectomy is exclusive to stent retrievers or also includes primary aspiration Study type: RCT Size: N=108 (halted prematurely)	Inclusion criteria: Age ≥18 y, ICA or MCA LVO; NIHSS ≥8, mRS 0–1, CTA thrombus ≥8 mm on thin section CT Exclusion criteria: Cervical ICA stenosis, 1/3 of MCA territory hypodensity, and mRS >1 pre-stroke, and many more	Intervention: Aspiration thrombectomy + IV alteplase (n=55) Comparator: Standard care - IV alteplase (n=53)	1° end point: mRS 0–2 at 90 d: 38% vs. 30%, <i>P</i> =0.52 Safety end point: • Death: 12% vs. 23.9%, <i>P</i> =0.18 • sICH: 9.3% vs. 9.7%, <i>P</i> =1.0	 TICI 2b/3: 70% Trend of benefit towards endovascular therapy in pre- specified secondary outcomes 	 Study halted early after MR CLEAN results reported Not powered to meet primary end point Stent retriever rescue utilized in 13% of patients 	First trial evaluating primary aspiration thrombectomy vs. medical management in the treatment of anterior circulation acute ischemic stroke from large vessel occlusion
MR CLEAN Berkhemer OA, et al. ¹⁰⁷ 2015 <u>25517348</u>	Aim: To determine whether IAT plus usual care would be more effective than usual care alone in patients with a proximal arterial occlusion in the anterior cerebral circulation that could be treated intraarterially	Inclusion criteria: Age>18 y, 6 h to IAT, anterior circulation LVO, NIHSS>2 Exclusion criteria:	Intervention: ET (n=233) Comparator: Standard care - IV alteplase (n=267)	 1° end point: mRS shift analysis at 90 d, adjusted OR, 1.67; 95% CI, 1.21– 2.3; mRS of 0–2 in 32.6% vs. 19.1% Safety end point: Death: 21% vs. 22% (<i>P</i>=0.75) 	 TICI 2b/3: 59% Median time to reperfusion: 332 min (IQR, 279– 394) 	 Relatively low reperfusion rates Low percentage of patients with functional neurological outcome 	• First randomized trial to demonstrate benefit of current ET with medical management over medical management

	within 6 h after symptom onset Study type: RCT Size: N=500	Exclusion of ICA dissection or occlusion at discretion of treating physician, BP > 185/110, and		• sICH: 7.7% vs. 6.4% (<i>P</i> =0.24)			alone for anterior circulation acute ischemic stroke • Broad inclusion criteria
EXTEND-IA Campbell BC, et al. ¹⁰⁵ 2015 <u>25671797</u>	Aim: To test whether more advanced imaging selection, recently developed devices, and earlier intervention improve outcomes Study type: RCT Size: N=70 (halted prematurely)	many more Inclusion criteria: Age ≥18 y, 6 h to groin, complete in 8 h, LVO anterior circulation, mRS 0–1, mismatch on automated perfusion imaging (Tmax threshold 6 s, CBF threshold 30%) Exclusion criteria: Carotid dissection, >1/3 MCA hypodensity, BP > 185/110, and many more	Intervention: ET (n=35) Comparator: Standard care - IV alteplase (n=35)	1° end point: • Median reperfusion at 24 h: 100% vs. 37%, adjusted OR, 4.7 (95% Cl, 2.5–9) • Decrease in NIHSS of 8 points or NIHSS 0–1 at 3 d: 80% vs. 37%, adjusted OR, 6 (95% Cl, 2–18) Safety end point: • Death: 9% vs. 20%, adjusted OR, 0.45 (95% Cl, 0.1–2.1) • sICH: 0 vs. 6%	TICI 2b/3: 86% Median time to reperfusion: 248 min (IQR, 204– 277)	 Limited ability to generalize results given homogenous study population with narrow selection parameters, provision of care at tertiary care facilities only and early timeframe presentation and treatment Study halted early after MR CLEAN results reported Small patient numbers 	Substantial benefit to endovascular therapy in patients with anterior circulation large vessel occlusion ischemic stroke, small ischemic cores randomized after IV alteplase and treated <6 h from onset of symptoms
ESCAPE Goyal M, et al. ¹⁰⁴ 2015 <u>25671798</u>	Aim: To test whether patients with acute ischemic stroke, who were selected on the basis of results of CT and CTA, would benefit from rapid endovascular treatment involving contemporary endovascular techniques	Inclusion criteria: Age>18 y, 12 h to randomization, ICA/MCA LVO, NIHSS>5, Barthel score≥90, ASPECTS>6, CT collateral	Intervention: ET (n=150) Comparator: Standard care ± IV alteplase (n=165)	 1° end point: mRS shift analysis at 90 d; adjusted OR, 3.1 (95% CI, 2–4.7) Safety end point: Death: 10.4% vs. 19%; adjusted rate ratio, 0.5 (95% CI, 0.3–0.8) 	 TICI 2b/3: 72% Median time to reperfusion: 241 min (IQR, 176– 359) Median time CT to groin puncture: 51 min (IQR, 39–68) 	 Screening logs not required Small numbers of patients in 6- to 12-h treatment window Study halted early after MR 	• Emphasized process improvement to maximize treatment effect in patients selected based on collateral assessment of core and

REVASCAT Jovin TG, et al. ¹⁰² 2015 25882510 SWIFT-PRIME	Study type: RCT Size: N=316 (halted prematurely) Aim: To assess the safety and efficacy of thrombectomy for the treatment of acute ischemic stroke in a trial embedded within a population-based acute ischemic stroke reperfusion registry Study type: RCT Size: N=206 (halted prematurely) Aim: To establish the	score good or intermediate on multiphase CTA Exclusion criteria: ASPECTS≤6, and many more Inclusion criteria: Age 18–80 (85) y, 8 h to groin, LVO ICA/M1, NIHSS ≥6, mRS 0–1 Exclusion criteria: ASPECTS<7 on CT or <6 on MRI, BP > 185/110, and many more	Intervention: ET (n=103) Comparator: Standard care - IV alteplase (n=103)	 sICH: 3.6% vs. 2.7%; adjusted rate ratio, 1.2 (95% Cl, 0.3–4.6) 1° end point: mRS shift analysis at 90 d (mRS 5 and 6 combined), adjusted OR, 1.7 (95% Cl, 1.05– 2.8) Safety end point: Death: 18% vs. 16%; adjusted risk ratio, 1.2 (95% Cl, 0.6–2.2) sICH: 2% vs. 2%; adjusted risk ratio, 1.0 (95% Cl, 0.1–7) 	 Mortality: 10.4% endovascular vs. 19% medical (P=0.04) TICI 2b/3: 66% Median time to reperfusion: 355 min (IQR, 269– 430) 	CLEAN published • Study halted early after MR CLEAN results reported • Small numbers of patients in 6- to 8-h treatment window • Screening logs not available	penumbral tissue • Only recent trial to show mortality benefit from endovascular therapy For patients with acute ischemic stroke due to anterior circulation, proximal large vessel occlusion without large core on CT imaging and treated within 8 h of onset, endovascular therapy with medical management showed benefit over medical therapy alone Substantial
Swif I-PRIME Saver JL, et al. ¹⁰³ 2015 <u>25882376</u>	Aim: To establish the efficacy and safety of rapid neurovascular thrombectomy with the stent retriever in conjunction with IV alteplase vs. IV alteplase alone in patients with acute ischemic stroke Study type: RCT	Inclusion criteria: Age 18–80 y, 6 h to groin puncture, ICA/M1 LVO, target mismatch profile on imaging with RAPID or local perfusion software, NIHSS 8–29, mRS 0–1	ET (n=98) Comparator: Standard care - IV alteplase (n=98)	1° end point: mRS shift analysis at 90 d (mRS 5 and 6 combined), <i>P</i> <0.001 Safety end point: • Death: 9% vs. 12%, adjusted rate ratio: 0.74 (95% CI, 0.33–1.68) • sICH: 0 vs. 3%	 Functional independence at 90 d: 60% endovascular vs. 35% medical (<i>P</i><0.001) TICI 2b/3: 88% Median time to reperfusion: 332 min (IQR, 279– 394) 	• Limited ability to generalize results given homogenous study population with narrow selection parameters, provision of care at tertiary care facilities only and workflow and process	Substantial benefit to endovascular therapy in patients with anterior circulation LVO ischemic stroke; small ischemic cores randomized after IV alteplase and

	Size: N=196 (halted prematurely)	Exclusion criteria: Inability to receive IV alteplase, cervical dissection or complete occlusion requiring stenting, CT ASPECTS<6, BP > 185/110 and many more			• Reperfusion at 24 h: 83% endovascular vs. 40% medical management (<i>P</i> <0.001)	development as part of protocol • Study halted early after MR CLEAN results reported • CT or MRI mismatch for selection of first 71 patients, then only ASPECTS≥6 for the next 125	treated <6 h from onset of symptoms
IMS-III Broderick JP, et al. ³⁵¹ 2013 <u>23390923</u>	Aim: To test the approach of IV alteplase followed by protocol-approved endovascular treatment, as compared with standard IV alteplase Study type: RCT Size: N=656	Inclusion criteria: Age18– 82 y; 3 h to IV alteplase; 5 h to ET; NIHSS≥10 or 8–9 with occlusion; mRS 0–2 Exclusion criteria: Inability to receive alteplase, hypodensity >1/3 of MCA territory, and many more	Intervention: IAT (n=434) Comparator: Standard care - IV alteplase (n=222)	1° end point: mRS 0–2 at 90 d: 40.8% vs. 38.7%; adjusted difference: 1.5% (95% Cl, -6 to 9) Safety end point: • Death: 19.1% vs. 21.6% (<i>P</i> =0.52) • sICH: 6.2% vs. 5.9% (<i>P</i> =0.83)	 TICI 2b/3: 41% Mean time to reperfusion: 325±52 min 	 Limited use of newer- generation, more efficient thrombectomy devices Evolving protocol during the duration of the study (addition of CTA, newer thrombectomy devices) Reduced dose of IV alteplase (two-thirds) for endovascular patients 	Trial halted due to futility; no outcome benefit to endovascular therapy with medical therapy over medical therapy alone
SYNTHESIS Expansion Ciccone A, et al. ³⁵² 2013 23387822	Aim: To investigate whether endovascular treatment, including the options of a mechanical device and intraarterial alteplase, is more effective than the currently	Inclusion criteria: Age 18–80 y; 6 h to ET, NIHSS≤25, mRS 0–1	Intervention: ET with IA drug, device, both (n=181)	1° end point: mRS 0–1 at 3 mo: 39% vs. 34.8%, adjusted OR, 0.71; 95% CI, 0.44–1.14 Safety end point:	No secondary outcome differences between groups	• Limited use of newer- generation, more efficient thrombectomy devices	No benefit to endovascular therapy with medical management over medical therapy alone in

	available treatment with IV alteplase Study type: RCT Size: N=362	Exclusion criteria: Hemorrhage on initial imaging	Comparator: IV alteplase (n=181)	• Death: 14.4% vs. 9.9% (<i>P</i> =0.22) • sICH: 6% vs. 6% (<i>P</i> =0.53)		 No reperfusion rates reported Vessel occlusion not a prerequisite for treatment selection (3/181 endovascular pts not treated because of no occlusion) 	a broadly selected patient group with anterior circulation acute ischemic stroke
MR RESCUE Kidwell CS, et al. ³⁵³ 2013 23394476	Aim: To determine whether brain imaging can identify patients who are most likely to benefit from therapies for acute ischemic stroke and whether endovascular thrombectomy improves clinical outcomes Study type: RCT Size: N=118	Inclusion criteria: Anterior circulation LVO <8 h; favorable penumbral multimodal imaging for stratification (favorable defined as core <90 cc, or <70% of volume of tissue at risk) Exclusion criteria: Cervical artery occlusion, severe stenosis or dissection, inability to process imaging by study software, and many more	Intervention: ET (n=64) Comparator: Standard care ± IV alteplase) (n=54)	1° end point: Mean mRS at 90 d: 3.9 vs. 3.9, <i>P</i> =0.99 Safety end point: • Death: 19% vs. 24% (<i>P</i> =0.75) • sICH: 5% vs. 4% (<i>P</i> =0.24)	 TICI 2b/3: 27% No difference in infarct growth or final infarct volume between groups No benefit in favorable penumbra group 	 No use of newer- generation, more efficient thrombectomy devices Long trial duration (8 y) Relative delays to groin puncture from imaging acquisition 	Trial showed no benefit from endovascular therapy with medical management compared to medical management alone after treatment selection based on penumbral imaging

TREVO 2 Nogueira RG, et al. ³⁵⁴ 2012 <u>22932714</u>	Aim: To compare efficacy and safety of the Trevo Retriever with its US FDA- cleared predecessor, the Merci Retriever Study type: RCT Size: N=178	Inclusion criteria: Age 18–85 y, anterior circulation LVO <8 h, NIHSS 8– 29 Exclusion criteria: Exclusions for IV alteplase, excessive tortuosity, proximal cervical stenosis, >1/3 MCA hypodensity, and many more	Intervention: Trevo thrombectomy (n=88) Comparator: Merci thrombectomy (n=90)	1° end point: TICI scale 2/3: 86% vs. 60%; OR, 4.22; 95% CI, 1.92–9.69 Safety end point: • Death 33% vs. 24% (<i>P</i> =0.18) • sICH 7% vs. 9% (<i>P</i> =0.78)	mRS 0–2 at 90 d: 40% vs. 22%, OR, 2.39; 95% CI, 1.16–4.95	 Did not compare to aspiration systems or other stent retrievers No tandem carotid occlusions included 	Demonstrated the superiority of Trevo stent retrievers over early-generation devices for thrombectomy
SWIFT Saver JL, et al. ³⁵⁵ 2012 <u>22932715</u>	Aim: To compare the efficacy and safety of Solitaire with the standard, predicate mechanical thrombectomy device, the Merci Retrieval System Study type: RCT Size: N=113	Inclusion criteria: Age 22–85 y, anterior circulation LVO <8 h, NIHSS 8– 30, ineligible for/failure to respond to IV alteplase Exclusion criteria: Infarct >1/3 of MCA territory, and many more	Intervention: Solitaire thrombectomy (n=58) Comparator: Merci thrombectomy (n=55)	1° end point: TIMI scale 2/3 without sICH: 61% vs. 24%; OR, 4.87; 95% CI, 2.14–11.1 Safety end point: • Death: 17% vs. 38% (<i>P</i> =0.02) • sICH: 2% vs. 11% (<i>P</i> =0.057)	mRS 0–2 at 90 d: 58% vs. 33%; OR, 2.78; 95% CI, 1.25–6.22	 Did not compare to aspiration systems or other stent retrievers Halted early, which limited precision of treatment effect estimates No tandem carotid occlusions included 	First acute ischemic stroke trial to randomize one endovascular technique for reperfusion against another; demonstrated the superiority of Solitaire stent retriever over early generation devices for thrombectomy
MELT Ogawa A, et al. ³⁵⁶ 2007 <u>17702958</u>	Aim: To determine the safety and clinical efficacy of intraarterial infusion of urokinase in patients with	Inclusion criteria: 20–75, NIHSS ≥5 <23, mRS 0–2,	Intervention: IAT urokinase (n=57)	1° end point: mRS 0–2 at 90 d: 49.1% vs. 39%; OR, 1.54; 95% Cl, 0.73–3.23; <i>P</i> =0.345	TIMI 2/3: 73% (extrapolated mTICI 2b/3: 53%)	Comparator group not contemporary medical acute	Multicenter randomized trial assessing endovascular thrombolysis

	acute ischemic stroke within 6 h of onset Study type: RCT Size: N=114	initiation of IAT within 6 h Exclusion criteria: High intracranial hemorrhage risk, NIHSS>22, and many more	Comparator: Control (n=57)	Safety end point: • Death: 5.3% vs. 3.5% (<i>P</i> =1.0) • ICH <24 h: 9% vs. 2% (<i>P</i> =0.21)		ischemic stroke therapy • Study halted early after IV alteplase approved in Japan • Not powered to meet primary end point	terminated early and therefore unable to meet primary end point
PROACT II Furlan A, et al. ³⁵⁷ 1999 <u>10591382</u>	Aim: To determine efficacy and safety of IA pro-urokinase in acute ischemic stroke <6 h in MCA occlusion Study type: RCT Size: N=180	Inclusion criteria: 18–85 y; NIHSS≥4–30 (except isolated aphasia, hemianopia) Exclusion criteria: High intracranial hemorrhage risk, NIHSS>30, and many more	Intervention: 9 mg IA pro- urokinase + heparin (n=121) Comparator: Heparin (n=59)	1° end point: mRS 0–2 at 90 d: 40% vs. 25%, <i>P</i> =0.04 Safety end point: • Death: 25% vs. 27% (<i>P</i> =0.8) • sICH: 10% vs. 2% (<i>P</i> =0.06)	TIMI 2/3: 66% in pro-urokinase group vs. 18% in controls on 2 h angiogram (<i>P</i> <0.001)	Comparator group not contemporary medical acute ischemic stroke therapy	Original multicenter randomized trial showing clinical efficacy of IA intervention (thrombolysis) in patients with acute MCA ischemic stroke <6 h duration

Abbreviations: ASPECTS indicates Alberta Stroke Program Early Computed Tomography Score; CBF, cerebral blood flow; CI, confidence interval; CT, computed tomography; CTA, computed tomographic angiography; ET, endovascular therapy; h, hours; IA, intra-arterial; IAT, intra-arterial therapy; ICA, internal carotid artery; ICH, intracerebral hemorrhage; IQR, interquartile range; IV, intravenous; LVO, large vessel occlusion; MCA, middle cerebral artery; MRI, magnetic resonance imaging; mRS, modified Rankin Score; mTICI, modified thrombolysis in cerebral infarction; N/A, not available; NIHSS, National Institute of Health Stroke Scale; OR, odds ratio; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; TICI, thrombolysis in cerebral infarction; TIMI, thrombolysis in myocardial infarction; Tmax, time-to-maximum; US FDA, United States Food and Drug Administration; y, years.

Literature search topic: Hypotension AND Endovascular interventions

Table XXIV. Nonrandomized Trials, Observational Studies, and/or Registries of Collateral Status

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
MR CLEAN Berkhemer OA, et al. ¹¹⁰ 2016	Secondary analysis of CTA collateral	Inclusion criteria: MR CLEAN patients with CTA and ICA, M1, or M2 occlusion	1° end point: CTA collateral status (4-point scale ranging from 0 for absent collaterals and 3 for good collaterals with 100% filling of the occluded territory) and adjusted common OR for shift in mRS	The benefit of intra-arterial therapy was greatest in patients with good collaterals; treatment benefit appeared less and may be absent in

<u>26903582</u>	status from MR CLEAN RCT Size: N=493	Exclusion criteria: N/A	Results: Collateral status (CTA) modified treatment effect (<i>P</i> =0.038); common OR: grade 3, 3.2 (1.7–6.2); grade 2, 1.6 (1.0–2.7); grade 1, 1.2 (0.7-2.3); grade 0, 1.0 (0.1–8.7)	patients with absent or poor collaterals
IMS III Menon BK, et al. ¹¹¹ 2015 25791716	Study type: Secondary analysis of CTA collateral status from IMS III RCT Size: N=185	Inclusion criteria: IMS III patients with CTA and M1/ICA occlusion Exclusion criteria: Incomplete CTA coverage, unavailable scans, or poor image quality	1° end point: CTA collateral status Results: Collateral status was a significant predictor of all clinical outcomes (<i>P</i> <0.05); maximal benefit with intermediate collaterals, some benefit with good collaterals; modification of treatment effect was not observed (limited power due to small number of patients noted)	Baseline CTA collaterals appear to be a robust determinant of final clinical outcome

Abbreviations: CTA indicates computed tomography angiography; ICA internal carotid artery; M1/ICA, middle cerebral artery segment; OR, odds ratio; and RCT, randomized clinical trial.

Literature search topic: Vessel and collateral status imaging

Table XXV. Nonrandomized Trials, Observational Studies, and/or Registries of Chest Radiography in Patients with Acute Ischemic Stroke

Study Acronym; Author;	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Year Published	Chudu hunou	Inclusion exiteria:	40 and a sint. December and the	The herefit of intro exterial thereasy
Saber H, et al. ¹¹²	Study type: Secondary analysis	Inclusion criteria: IMS-III who had data	1° end point: Door-to-needle time	The benefit of intra-arterial therapy was greatest in patients with good
2016 27412145	of data from IMS-III	recorded on pefromance of CXR	Results: Patients with CXR done before treatment (n=243) had longer mean door-to-needle times than those who did	collaterals; treatment benefit appeared less and may be absent in
27412140	Size: N=615	on the initial evaluation	not (n=372); 75.8 vs 58.3 minutes, P =0.0001.	patients with absent or poor collaterals
		Exclusion criteria: IMS-III, did not originally present to facility providing IV alteplase	2° end point: Cardiopulmonary adverse events in the first 24 hours of admission, endotracheal intubation in the first 7 hours, and in-hospital mortality were not different between the 2 groups.	

Abbreviations: CXR indicates chest X-ray

Aim: to determine whether low-dose oxygen therapy during the first 3 days after an acute stroke improves	Inclusion criteria: clinical diagnosis of	Intervention: O ₂ at 3 L/min if	1° end point: Ordinal mRS at	No subgroup	 Includes 	Among
outcome compared with usual care (oxygen only when needed) Study type: RCT with blinded 1° end point assessment Size: N=8003	acute stroke within 24 hours of hospital admission Exclusion criteria: Indications or contraindiactions for O ₂	baseline saturation was 93% or below or at of 2 L/min if baseline saturation was greater than 93%. (1) continuous oxygen for 72 h (n=2668); (2) nocturnal oxygen only for 3 nights (n=2667) Comparator: No O ₂ (n=2668)	90 d was similar among groups: unadjusted OR for a better outcome was 0.97; 95% CI, 0.89- 1.05; $P = .47$; for oxygen vs control, and 1.03; 95% CI, 0.93- 1.13; $P = .61$; for continuous vs nocturnal oxygen. Safety end point: No oxygen related adverse events	could be identified that benefited from oxygen	some participants with ICH (7.3%), stroke mimics (3.6%) or transient ischemic attacks (2.1%) •1° end point assessed by postal questionnaire and supported by telephone interviews with nonresponders	nonhypoxic patients with acute stroke, the prophylactic use of low-dose oxygen supplementation did not reduce death or disability at 3 months. These findings do not support low- dose oxygen in this setting.
to prevent hypoxia Study type: Randomized single- blind pilot study	criteria: Acute stroke Exclusion criteria: Indications for	Intervention: 2 L O ₂ by NC if baseline O ₂ >93% or 3 L NC if baseline O ₂ <93% for 72 h (n=148)	1° end point: Ordinal mRS at 6 mo was similar among groups (1.04 [0.67–1.60]; <i>P</i> =0.86)	at 6 mo trended worse in patients who received O ₂ (1.50 [0.94–	 Includes some participantswith ICH SaO₂ was not continuously monitored 	No clear benefit to supplemental O ₂ , and maybe some harm
	(oxygen only when needed) Study type: RCT with blinded 1° end point assessment Size: N=8003 Aim: Supplemental O ₂ to prevent hypoxia Study type: Randomized single-	(oxygen only when needed)Exclusion criteria: Indications or contraindiactions for O2Study type: RCT with blinded 1° end point assessmentIndications or contraindiactions for O2Size: N=8003Inclusion criteria: Aim: Supplemental O2 to prevent hypoxiaAim: Supplemental O2 to prevent hypoxiaInclusion criteria: Acute strokeStudy type: Randomized single- blind pilot studyExclusion criteria: Indications for	(oxygen only when needed)Exclusion criteria: Indications or contraindiactions for O2saturation was greater than 93%.Study type: RCT with blinded 1° end point assessmentindications or contraindiactions for O2(1) continuous oxygen for 72 h (n=2668); (2) nocturnal oxygen only for 3 nights (n=2667)Size: N=8003Inclusion criteria: Acute strokeIntervention: 2 L O2 (n=2668)Aim: Supplemental O2 to prevent hypoxiaInclusion criteria: Acute strokeIntervention: 2 L O2 by NC if baseline O2 >93% or 3 L NC if baseline O2 <93% for 72 h (n=148)	(oxygen only when needed)Exclusion criteria: Indications or contraindiactions for O2saturation was greater than 93%.0.97; 95% CI, 0.89- 1.05; P = .47; for oxygen vs control, and 1.03; 95% CI, 0.89-Study type: RCT with blinded 1° end point assessmentfor O2(1) continuous oxygen for 72 h (n=2668); (2) nocturnal oxygen only for 3 nights (n=2667)0.97; 95% CI, 0.89- 1.05; P = .47; for oxygen vs control, and 1.03; 95% CI, 0.93- 1.13; P = .61; for continuous vs nocturnal oxygen.Aim: Supplemental O2 to prevent hypoxiaInclusion criteria: Acute strokeIntervention: 2 L O2 by NC if baseline O2 >93% or 3 L NC if baseline O2 <93% for 72 h (n=148)Safety end point: No oxygen related adverse events	(oxygen only when needed)Exclusion criteria: Indications or contraindiactions for O2saturation was greater than 93%.0.97; 95% Cl, 0.89- 1.05; P = .47; for oxygen vs control, and 1.03; 95% Cl, 0.93- 0.93- 1.03; 95% Cl, 0.93- 0.93- 1.13; P = .61; for continuous oxygen only for 3 nights (n=2667)0.97; 95% Cl, 0.89- 1.05; P = .47; for oxygen vs control, and 1.03; 95% Cl, 0.93- 0.93- 1.13; P = .61; for continuous vs nocturnal oxygen.Aim: Supplemental O2 to prevent hypoxiaInclusion criteria: Acute strokeIntervention: 2 L O2 by NC if baseline O2 >93% or 3 L NC if baseline O2 ey3% or 3 L NC if baseline O2 ey3% or 72 h (n=148)Safety end point: No oxygen.Barthel Index at 6 mo trended	with usual care (oxygen only when needed)admission Exclusion criteria: Indications or contraindiactions for O2baseline saturation was greater than 93%.outcome was 0.97; 95% CI, 0.89- 1.05; P = .47; for oxygen vs control, and 1.03; 95% CI, or oxygen vs control, and 1.03; 95% CI, 0.93- 1.03; 95% CI, 0.93- 1.13; P = .61; for coxygen.or transient ischemic attacks (2.1%)Size: N=8003Inclusion criteria: network(1) continuous oxygen for 72 h (n=2668); (2) nocturnal oxygen only for 3 nights (n=2667)0.93- 1.13; P = .61; for contrunous vs nocturnal oxygen1° end point assessed by postal questionnaire and supported by telephone interviews with nonrespondersAim: Supplemental O2 to prevent hypoxiaInclusion criteria: Acute strokeInclusion criteria: Adverse eventsIncludes some patients who criteria: haseline O2 >93% or 3 L NC if baseline O2 >93% or 3 L NC imadomized single- bind pilot studyInclusion criteria: Adverse eventsIncludes some patients who received O2 (n=148)Includes some protection• Includes some patients who received O2 (1.50 [0.94- 2.37];

Table XXVI. Randomized Clinical Trials Comparing Supplemental Oxygen

SPOTRIAS Singhal AB, et al. ³⁵⁹ 2013 Link to article	Aim: Benefit of O ₂ Study type: RCT Size: N=85	Inclusion criteria: AIS <9 h and NIHSS >4 Exclusion criteria: Use of alteplase; need for >3 L/min oxygen to maintain SaO ₂ >92%; NYHA Class III heart failure	Comparator: No O ₂ (n=141) Intervention: Supplemental O ₂ (n=43) Comparator: Room air (n=42)	Safety end point: N/A 1° end point: Change in NIHSS at 0–4 h: no difference Safety end point: 0–24 h change in NIHSS: no difference between groups	 Percent lesion growth at 3 mo Tissue reperfusion and % mismatch lost were all similar SAEs, brain hemorrhage and brain edema were all similar 	• Larger study is underway Imbalance in stroke severity in treated groups; no difference if controlled for comorbidities	Study stopped early by DSMB and published only as an abstract
SOS pilot study Roffe C, et al. ³⁶⁰ 2011 <u>21625533</u>	Aim: Effect of oxygen within 24 h on 7-day outcomes Study type: Single- blind RCT Size: N=148 vs. N=141	Inclusion criteria: Acute stroke admitted within the preceding 24 h Exclusion criteria: Recognized need for oxygen or contraindication for oxygen	Intervention: Oxygen supplementation via NC for 72 h (n=148) Comparator: Room air (n=141)	1° end point: Similar NIHSS at 1 wk; oxygen- treated patients had more improvement in NIHSS at 7 d; more oxygen- treated patients had at least a 4- point improvement in NIHSS (OR, 2.9; 95% CI, 1.59–5.4) Safety end point: N/A	There were no differences in physiologic parameters (BP and HR) between groups	Supplemental oxygen did not prevent desaturations	Patients with supplemental oxygen appeared to have greater improvement in NIHSS over the first wk, but the absolute NIHSS did not differ between groups
Roffe C, et al. ³⁶¹ 2010 <u>20123224</u>	Aim: Study the effects of supplemental oxygen at night on oxygen saturation	Inclusion criteria: RX within 72 h	Intervention: 2 L/min oxygen at night (n=30)	1° end point: Nocturnal oxygen supplementation increased the	There were no differences in physiologic	Supplemental oxygen did not prevent desaturations	Supplemental oxygen prevents desaturations, but there is no

	Study type: RCT Size: N=63 (59 with actual stroke)	Exclusion criteria: Definite need for oxygen	Comparator: Room air (n=33)	mean nocturnal oxygen by 2.5% and decreased desaturations by 1.3% Safety end	parameters (BP and HR) between groups		clinical correlate in this study
Singhal AB, et al. ³⁶² 2005 <u>15761201</u>	Aim: Evaluate high flow O ₂ in those with acute stroke with diffusion perfusion mismatch Study type: RCT Size: N=16	Inclusion criteria: RX within 12 h; diffusion perfusion mismatch Exclusion criteria: COPD, need for >3 L/min to maintain SaO ₂ >95%, medical instability, inability to obtain MRI	Intervention: High-flow O ₂ by face mask (n=9) Comparator: Room air (n=7)	point: N/A 1° end point: No difference in stroke scale scores at 3 mo; transient improvements in MRI in hyperoxia- treated patients Safety end point: N/A	24-h MRIs showed petechial hemorrhages in 50% of hyperoxia- treated patients vs. 17% of controls (NS)	Very small pilot study	Study too small to say anything
Ronning OM, et al. ³⁶³ 1999 <u>10512903</u>	Aim: Supplemental oxygen (100%) vs. no supplemental oxygen Study type: Quasi- randomized RCT Size: N=550	Inclusion criteria: RX within 24 h of stroke onset Exclusion criteria: Age<60 y	Intervention: 3 L oxygen via NC for 24 h (n=292) Comparator: No supplemental oxygen (or NC) (n=258)	1° end point: 1- y survival: no differences between groups Scandinavian stroke scale and BI at 7 mo: no difference between groups Safety end point: N/A	 For those with minor strokes, oxygen use was associated with decreased 1-y survival (0.45 [0.23–0.90]; P=0.02) Trend towards worse BI at 7 mo (P=0.07) 	Not all patients (11%) allocated to treatment received oxygen for the full 24 h, implying that oxygen therapy may be even worse than the data suggest	No clear benefit to supplemental oxygen, and maybe some harm

Abbreviations: AIS, indicates acute ischemic stroke; BP, blood pressure; BI, Barthel Index; COPD, chronic obstructive pulmonary disease; DSMB, data safety and monitoring board; h, hours; HR, heart rate; ICH, intracerebral hemorrhage; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; N/A, not available; NC, nasal cannula; NIHSS, National Institutes of Health Stroke Scale; NS, not significant; NYHA, New York Heart Association; OR, odds ratio; RCT, randomized clinical trial; RX, treatment; SAE, serious adverse event; SaO₂, oxygen saturation; and y, year.

Literature search topic: Oxygen supplementation

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary Endpoint and Results (P values; OR or RR; & 95% Cl)	Summary/Conclusion Comment(s)
Heyboer M, et al. ¹¹⁵ 2017 <u>28616361</u>	Study type: Review of side effects of HBO Size: NA	Inclusion criteria: Review of HBO studies Exclusion criteria: N/A	 1° endpoint: Side-effects Results: Middle ear barotrauma is the most common complication – reported rates vary drastically but a recent review suggests it may be as common as 43%. Other side effects include sinus/paranasal barotrauma, dental barotrauma, pulmonary barotrauma, increased BP, claustrophobia and seizures. 	 HBO therapy is associated with a number of potential side effects Review; no primary data
Heyboer M, et al. ¹¹⁶ 2014 <u>25558546</u>	Study type: retrospective chart review Size: 931 patients undergoing 23,328 treatments	Inclusion criteria: any patient undergoing HBO treatment at a university hospital and an outpatient center for any indication Exclusion criteria: N/A	1° endpoint: frequency of seizures Results: Seizures occurred at a rate of 1/2121 treatments (5/10,000) and were more common at higher pressures – 0/16,430 at 2.0 atm, 1/669 at 2.4/2.5 atm and 1/197 at 2.8 atm (<i>P</i> <0.001)	 HBO therapy is associated with an increased risk of seizures, with the risk being greater at higher pressures Retrospective chart review in a cohort of patients undergoing HBO therapy, but not for stroke
Bennett MH, et al. ¹¹⁴ 2014 <u>25387992</u>	Study type: Cochrane review of RCTs	Inclusion criteria: Pooled analysis of HBO RTCs for AIS	1° endpoint: death at 3-6 months Results:	• There is no evidence that HBO therapy improves outcome in AIS, although the possibility of clinical benefit has not been excluded.

Size: 11 RCTs with 705 patients	Exclusion criteria: N/A	 No difference in case fatalities at 6 mo for those receiving HBO compared with controls (RR, 0.97; 95% CI, 0.34-2.75; <i>P</i>=0.96) 4/14 measures of disability/functional outcome showed some benefit to HBO therapy 	 Methodologies of trials differed making pooled analysis of outcomes other than fatality difficult.
------------------------------------	----------------------------	---	--

Abbreviations: CI indicates confidence interval; HBO, hyperbaric oxygen; HR, hazard ratio; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk. Literature search topic: HBO

Table XXVIII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypotension and Hypovolemia

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Visvanathan A, et al. ¹²⁵ 2015 <u>26329401</u>	Study type: Cochrane systematic review Size: N=2351 participants (12 studies)	Inclusion criteria: Randomized trials of parenteral fluid regimens in adults with ischemic or hemorrhagic stroke within 7 d of onset that reported death or dependence Exclusion criteria: Quasi-randomized, non-randomized, and cross-over trials	 1° end point: Death or dependence at follow-up Results: Odds of death or dependence were similar (OR, 0.97; 95% CI, 0.79–1.21) Pulmonary edema was more common in participants allocated to colloids (OR, 2.34; 95% CI, 1.28–4.29) and a higher risk of cerebral edema (OR, 0.20; 95% CI, 0.02–1.74) and pneumonia (OR, 0.58; 95% CI, 0.17–2.01) was observed with crystalloids Clinically important benefits or harms could not be excluded There was no evidence to guide volume, duration, or mode of parenteral fluid delivery 	 No evidence that colloids were associated with lower odds of death or dependence in the medium term after stroke compared with crystalloids No evidence to guide the best volume, duration, or mode of parenteral fluid delivery for people with acute stroke
Wohlfahrt P, et al. ¹¹⁷ 2015 <u>25380168</u>	Study type: Consecutive patients, Observational Size: N=532	Inclusion criteria: • Consecutive hospitalized patients <81 y with symptoms more than 24 h (unless thrombolytic therapy was applied) • Only patients with CT or MRI excluding hemorrhagic stroke	 1° end point: Total mortality, median follow-up was 66 wk Results: Admission MBP<100 mmHg had a higher risk of death than those with MBP between 100–110 and 110–121 mmHg, whereas the risk of mortality did not differ from the group with admission MBP>122 mmHg Similarly, patients with discharge SBP<120 mmHg had an increased risk of death as compared to groups with SBP between 120–130 and 130–141 mmHg, whereas the risk of death was similar to that with discharge SBP>141 mmHg 	Among patients hospitalized for their first-ever ischemic stroke, the risk of all-cause death is significantly increased in those with admission MBP<100 mmHg and discharge SBP<120 mmHg, even after adjustments for other confounders

		Exclusion criteria: Admission and discharge BP value unavailable		
Muscari A, et al. ¹²⁴ 2013 <u>23561704</u>	Study type: Observational Size: N=252	Inclusion criteria: Patients with ischemic stroke admitted to the stroke unit within 24 h from onset of symptoms Exclusion criteria: Undergoing systemic thrombolysis	 1° end point: Improvement defined as a difference between initial and final assessment (ΔNIHSS) ≥2 points Results: Among 27 patients with average SBP≤118 mmHg, 21 improved (77.8%) vs. 100 of 225 patients with average SBP>118 mmHg (44.4%; Chi-square,10.7; P=0.001) With respect to the patients with average SBP>118 mmHg, those with average SBP≤118 mmHg had an OR of improving of 4.29 (95% CI, 1.60–1.50; P=0.004), after adjustment for the three other variables independently associated with improvement 	Lower blood pressure associated with early neurological improvement
Manning LS, et al. ¹²³ 2015 <u>25908462</u>	Study type: Subsequent analysis of 2 RCTs of blood pressure management in acute ischemic stroke Size: N=706 (COSSACS) + N=171 (CHHIPS)	Inclusion criteria: • CHHIPS: symptom onset <36 h and SBP>160 mmHg • COSSACS: patients with acute stroke, recruited <48 h of symptom onset Exclusion criteria: • CHHIPS: SBP>200 mmHg or DBP>120 mmHg in association with ICH, impaired conscious level, and premorbid dependency (mRS>3) • COSSACS: same as those in CHHIPS (listed above), with the addition of: dysphagia; definite indication to	1° end point: Death or major disability (defined as mRS>3 at 2 wk) Results: Neither maximum or minimum SBP or DBP associated with death or major disability (defined as mRS>3 at 2 wk)	Minimum BP not associated with 2- week outcome

Okamura K, et al. ¹¹⁹	Study type: Registry	continue/discontinue antihypertensive therapy Inclusion criteria: Brain infarction	1° end point: Death within 30 d	Lower and higher BP after brain infarction were predictors for poor
2005 <u>15894898</u>	Size: N=1004	admitted on the first day and who had undergone CT Exclusion criteria: No available data on SBP, DBP, and level of consciousness on admission	Results: • A U-shaped relationship was observed between admission BP levels (both SBP and DBP) and mortality rate within 30 d • Patients at the lowest BP level (SBP<130 mmHg or DBP<70 mmHg) had the poorest outcomes	early prognosis
Stead LG, et al. ¹²⁰ 2005 <u>16247043</u>	Study type: Consecutive patients, observational Size: N=357	Inclusion criteria: Presented to the ED with acute ischemic stroke (ICD-CM codes 433 through 437) between mid- December 2001 and March 2004 within 24 h of symptom onset, for whom the initial BP was available Exclusion criteria: Limited to the 381 patients who resided in the local county or the surrounding nine- county area	 1° end point: 90 d mortality Results: Patients with DBP<70 mmHg were significantly more likely to die than those with DBP in the 70–105 mmHg range even after adjusting for age, gender, and NIHSS (RR, 1.8; 95% CI, 1.1–3.1; <i>P</i>=0.024) Patients with SBP <155 mmHg were significantly more likely to die within 90 d when compared to those with SBP in the range of 156–220 mmHg, even after adjusting for age, gender, and NIHSS score (RR, 1.8; 95% CI, 1.1–3.0; <i>P</i>=0.022) Patients with MAP<100 mmHg were more likely to die than patients with a MAP in the range of 101–140 mmHg, even after adjusting for age, sex, and NIHSS score (RR, 1.8; 95% CI, 1.1–2.9; <i>P</i>=0.027) 	Early hypotension (as measured by DBP, SBP, and MAP) is associated with increased early mortality risk
Castillo J, et al. ¹²¹ 2004 <u>14726553</u>	Study type: Consecutive patients, observational Size: N=300/258/258 (numbers evaluated for each of the primary end points)	Inclusion criteria: Patients admitted consecutively for a first episode of hemispheric ischemic stroke within 24 h	 1° end point: Early neurological deterioration Neurological deficit at 3 mo Mortality at 90 d Results: A U-shaped effect was observed: for every 10 mmHg ≤180 mmHg of SBP, the risk of early neurological deterioration, poor outcome, and mortality increased by 6%, 	• Both high and low SBP or DBP values within the first 24 h after stroke onset are associated with a poor prognosis in terms of early neurological deterioration, neurological deficit at 90 d, and infarct volume

		Exclusion criteria: Patients without a confirmed diagnosis of cerebral infarct (n=13), treated in an acute clinical trial (n=32), or with vasoactive amines (n=3) were excluded	25%, and 7%, respectively, whereas for every 10 mmHg >180 mmHg, the risk of early neurological deterioration increased by 40% and the risk of poor outcome increased by 23%, with no effect on mortality	• This effect is independent of prognostic factors such as stroke severity, body temperature, serum glucose, and stroke subtype
Vemmos KN, et al. ¹¹⁸ 2004 <u>14746563</u>	Study type: Consecutive patients, observational Size: N=930	Inclusion criteria: First-ever stroke patients admitted to hospital between July 1992 and November 2000 Exclusion criteria: Patients with transient ischemic attack, age <18 y, recurrent stroke and subarachnoid hemorrhage	1° end point: Mortality at 1 mo and 12 mo Results: Early (16.6%) and late (29.0%) mortality rate in patients with acute ischemic stroke showed the characteristic U-shaped distribution relative to the registered admission BP value; inflection at SBP 121–140, DBP 81–90	Acute ischemic stroke patients with high and low admission BP values have a higher early and late mortality
Leonardi-Bee J, et al. ¹²² 2002 <u>11988609</u>	Study type: Subsequent analysis of RCT of heparin and aspirin in acute ischemic stroke Size: N=17,398	Inclusion criteria: Patients with CT- confirmed ischemic stroke from the International Stroke Trial (IST) Exclusion criteria: Nonstroke, hemorrhagic stroke, or stroke of unknown type (i.e., no CT scan or postmortem was performed)	 1° end points: Death within 14 d and death or dependency at 6 mo Results: A U-shaped relationship was found between baseline SBP and both primary outcomes of death within 14 d and death or dependency at 6 mo The lowest frequency of poor outcome occurred in patients with a baseline SBP of 140–179 mmHg, with the nadir around 150 mmHg Patients with an SBP<150 mmHg had, for every 10-mmHg fall in blood pressure, an increased risk of early death of 17.9% (<i>P</i><0.0001) and an increased risk of death or dependency at 6 mo of 3.6% (<i>P</i>=0.044) Deaths resulting from coronary heart disease within 14 d were independently associated with low SBP (<i>P</i>=0.002) 	Both high blood pressure and low blood pressure were independent prognostic factors for poor outcome, relationships that appear to be mediated in part by increased rates of early recurrence and death resulting from presumed cerebral edema in patients with high blood pressure and increased coronary heart disease events in those with low blood pressure

Abbreviations: BP indicates blood pressure; CHHIPS, Controlling Hypertension and Hypotension Immediately Post-stroke; CI, confidence interval; COSSACS, Continue or Stop Post-stroke Antihypertensives Collaborative Study; CT, computed tomography; DBP, diastolic blood pressure; ED, emergency department; h, hours; HR, hazard ratio; ICD-CM, International Classification of Diseases-Clinical Modification; ICH, intracerebral hemorrhage; MAP, mean arterial pressure; MBP, mean blood pressure; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; RCT, randomizerd clinical trial; RR, relative risk; and SBP, systolic blood pressure.

Literature search topics: Treatment of hypotension AND Intravenous fluids and stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Adelman EE, et al. ³⁶⁴ 2016 <u>26419527</u>	Study type: Review of data from an RCT to increase alteplase use in Michigan Size: N=557 (233 patients with protocol deviations)	Inclusion criteria: AIS and thrombolysis Exclusion criteria: N/A	1° end point: sICH and other bad outcomes Results: No increase in sICH among patients with protocol violations, including BP	Data from community hospitals
Kodankandath TV, et al. ³⁶⁵ 2016 <u>27160383</u>	Study type: Retrospective review of drip and ship patients to single CSC Size: N=130	Inclusion criteria: IV alteplase at OSH and transfer to CSC Exclusion criteria: Stroke mimics	 1° end point: Poor outcomes – discharge to SNF, death, and discharge mRS>2, sICH Results: Increased risk of death and d/c to hospice among patients with inadequate BP control (SBP>180) upon arrival to CSC sICH not associated with inadequate BP control at arrival to CSC 	Elevated BP at arrival to a CSC after thrombolysis at an outside hospital is associated with worse outcomes, but not necessarily sICH
Liu K, et al. ¹³³ 2016 <u>26892891</u>	Study type: Observational Size: N=461	Inclusion criteria: AIS s/p thrombolysis Exclusion criteria: N/A	1° end point: Severe hemorrhagic transformation Results: Early (within the first 6 h) high SBP variability is associated with severe hemorrhagic transformation	 Chinese cohort Severe hemorrhagic transformation was defined as sICH with worsening of the NIHSS by at least 4 points for parenchymal hematoma
Waltimo T, et al. ¹³² 2016 <u>27529662</u>	Study type: Cohort Size: N=1868	Inclusion criteria: AIS treated with IV alteplase	1° end point: sICH Results: The OR for development of ICH per 10 mmHg increase in SBP at 2 h was 1.14 (1.03–1.25), at 4 h was 1.14	Higher BP after alteplase associated with sICH

	Table XXIX. Nonrandomized Trials	, Observational Studies,	and/or Registries of Blog	od Pressure and Thrombolysis
--	----------------------------------	--------------------------	---------------------------	------------------------------

		Exclusion criteria: N/A	(1.03–1.25), at 12 h was 1.12 (1.01–1.23), and at 48 h was 1.12 (1.01–1.23)	
TIMS-China Wu W, et al. ¹³⁰ 2016 <u>26828609</u>	Study type: Review of data from alteplase registry Size: N=1128	Inclusion criteria: AIS and thrombolysis within 4.5 h Exclusion criteria: N/A	 1° end point: sICH Results: Lower BP at baseline, at 2 h and 24 h after alteplase was associated with better outcomes (mRS<2 at 90 d) SBP>160 2 h after alteplase was associated with sICH (compared to SBP<140) An increase or no change in SBP after thrombolysis was associated with sICH compared to a decrease in SBP 	 Lower SBP is associated with decreased risk of sICH Lower SBP is associated with better outcomes
Lyerly MJ, et al. ³⁶⁶ 2014 <u>23954609</u>	Study type: Retrospective review of stroke registry Size: 76 violations out of 212	Inclusion criteria: AIS and thrombolysis Exclusion criteria: N/A	1° end point: sICH and other bad outcomes Results: No increase in sICH among patients with protocol violations	• Very few patients with BP violations
SAMURAI rt-PA registry Endo K, et al. ¹³¹ 2013 <u>23329210</u>	Study type: Analysis of sICH in SAMURAI registry (0.6 mg/kg) Size: N=527	Inclusion criteria: AIS s/p alteplase Exclusion criteria: N/A	1° end point: Outcomes Results: Initial BPs before thrombolysis were not associated with sICH, but SBP variability within the first 25 h was associated with sICH and death	Increased SBP variability, as opposed to absolute SBPs, was associated with worse outcomes
SITS Mazya M, et al. ¹²⁹ 2012 <u>22442178</u>	Study type: Analysis of sICH in SITS registry Size: N=31,627	Inclusion criteria: AIS, thrombolysis Exclusion criteria: N/A	1° end point: sICH Results: SBP≥146 before treatment associated with sICH (1.6; [1.3–2.0]; <i>P</i> <0.001)	 Higher BP before treatment with alteplase is associated with an increased risk of sICH The inflection point for risk occurs within the target BP range for administering alteplase
SITS-ISTR Toni D, et al. ¹²⁸ 2012 22402853	Study type: Subgroup analysis of SITS registry for outcomes in the young Size: N=3246	Inclusion criteria: Age 18–50 y, AIS s/p thrombolysis Exclusion criteria: N/A	1° end point: Outcome, sICH Results: Baseline SBP predicted sICH	No direct mention of BPs>185/110 or 180/105
Kellert L, et al. ³⁶⁷ 2011 <u>21527769</u>	Study type: Observational/retrosp ective	Inclusion criteria: AIS with thrombolysis	1° end point: Hemorrhagic transformation Results: BP protocol violations did not predict ICH or sICH	BP violations were frequent but not associated with ICH or sICH

	Size: N=427	Exclusion criteria:		
		N/A		
Butcher K, et al. ¹²⁶	Study type: Observation of blood	Inclusion criteria: AIS with thrombolysis	1° end point: Hemorrhagic conversion	 No direct mention of BPs >185/110 or 180/105
2010 <u>19926841</u>	pressures within the EPITHET RCT	Exclusion criteria:	Results: Increased hemorrhagic conversion in patients with large DWI lesion volumes and atrial fibrillation and higher 24-h weighted BP	
	Size: N=97		, , , , , , , , , , , , , , , , , , ,	
Perini F, et al. ¹²⁷ 2010	Study type: Observational	Inclusion criteria: AIS with thrombolysis	1° end point: Hemorrhagic conversion – HI or PH	No direct mention of BPs>185/110 or 180/105
<u>20674932</u>	Size : N=86	Exclusion criteria:	Results: There was an association between higher SBP and ICH, but not MBP and ICH	

Abbreviations: AIS indicates acute ischemic stroke; BP, blood pressure; CI, confidence interval; CSC, comprehensive stroke center; HI, hemorrhagic infarction; ICH, intracerebral hemorrhage; IV, intravenous; MBP, myelin basic protein; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; OSH, outside hospital; PH, parenchymal hemorrhage; RCT, randomizerd clinical trial; SBP, systolic blood pressure; sICH, symptomatic intracerebral hemorrhage; SNF, skilled nursing facility; and s/p, status post.

Literature search topic: Blood pressure AND Blood pressure and Endovascular Therapy AND Blood Pressure and Thrombolysis

Table XXX. Nonrandomized Studies of Hyperthermia After Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Saxena M, et al. ¹³⁴ 2015 <u>25643903</u>	Study type: Retrospective observational (2 countries) Size: N=53,942 in Australia and New Zealand (5176 with acute ischemic stroke) and N=56.696 in the UK (4190 with acute ischemic stroke)	Inclusion criteria: Adult patients admitted to one of 148 ICUs in New Zealand or the UK with a primary neurological diagnosis Exclusion criteria: CPR in the last 24 h	 1° end point: Relationship between peak temperature and stroke outcome Results: Both low (<37.0) and high (>39.0) temperatures are associated with worse stroke outcome 	Both hypothermia and hyperthermia are associated with worse stroke outcomes

Karaszewski B,	Study type:	Inclusion criteria:	1° end point: Relationship between body temperature	Delayed fever after stroke is
et al. ³⁶⁸	Prospective,	AIS	changes and stroke severity	associated with severe stroke and
2012	observational			more closely associated with poor
<u>23075282</u>		Exclusion criteria:	Results: Delayed fever is associated with severe stroke and	outcome than admission body
	Size : N=44	ICH, stroke mimics	worse outcome	temperature; very small patient cohort
PAIS den Hertog HM, et al. ³⁶⁹	Study type: Observation within an RCT	Inclusion criteria: Admission within 12 h of AIS	1° end point: Relationship between admission temperature and stroke outcome	• An increase in body temperature over the first 24 h after admission is associated with worse stroke
2011			Results: Admission temperature does not predict outcome,	outcome
<u>20878419</u>	Size: N=1332	Exclusion criteria:	but elevation within the first 24 h does; the odds for poor	 Patients were treated with
		Temp <36°C or	outcome increase by 1.3 (95% CI, 1.05–1.63) for each	antipyretics
		>39°C, imminent	degree C increase in temperature, and the odds for death	
		death, liver disease,	increase by 1.51 (95% Cl, 1.15–1.98) for each degree C	
		ETOH abuse	increase in temperature	

Abbreviations: AIS indicates acute ischemic stroke; CI, confidence interval; CPR, cardiopulmonary resuscitation; ETOH, ethanol; h, hours; ICH, intracerebral hemorrhage; ICU, intensive care unit; RCT, randomizerd clinical trial; and UK, United Kingdom. Literature search topic: Temperature

Table XXXI. Randomized Clinical Trials of Normothermia

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Broessner G, et al. ³⁷⁰ 2009 <u>19762706</u>	Aim: To assess the feasibility of endovascular cooling to achieve prophylactic normothermia in an ICU cohort.	Inclusion criteria: AIS, SAH, ICH in ICU Exclusion criteria: Active	Intervention: Endovascular maintenance of normothermia (n=51)	1° end point: Feasibility and fever burden, which was lower in the endovascularly cooled patients	Mortality and neurological outcome (GOS) were similar among groups at discharge,	Very few patients with ischemic stroke were included	No clear clinical benefit of achieving normothermia
	Study type: Prospective RCT Size: N=102	sepsis, h/o HIT, contraindication to placement of a central line, thrombolysis in the last 12 h	Comparator: Standard of care (n=51)	Safety end point: Infections were more common in patients with endovascular cooling (96% vs. 80%; <i>P</i> =0.03)	day 30, and month 6		

PAIS	Aim: To determine if early	Inclusion	Intervention:	1° end point:	The study was	In post hoc	There is no
den Hertog HM,	treatment with	criteria: AIS or	Paracetamol	Improvement on the mRS	terminated early	analysis,	benefit to routine
et al.371	paracetamol	ICH with	(acetaminophen	using the sliding	(planned	patients with	use of
2009	(acetaminophen) improves	treatment within) at a dose of 6	dichotomy approach at 3	enrollment was	baseline body	acetaminophen
<u>19297248</u>	outcome by reducing body	12 h of onset	g/d for 3 d	mo: there was no overall	2500) due to	temperature of	in acute stroke
	temperature.		(n=697)	benefit. OR, 1.20 (95% CI,	poor enrollment	37–39°C did	
		Exclusion		0.96–1.50)	and funding	improve (1.43,	
	Study type: Prospective	criteria: Temp	Comparator:		issues	1.02-1.97)	
	double-blind RCT	<36°C or >39°C,	Matched	Safety end point: No		,	
		imminent death,	placebo (n=703)	difference in SAEs			
	Size: N=1400	liver disease,		between groups.			
		ETOH abuse					

Abbreviations: AIS indicates acute ischemic stroke; ETOH, ethanol; GOS, Glasgow Outcome Scale; HIT, heparin-induced thrombocytopenia; h/o, history of; ICU, intensive care unit; OR, odds ratio; RCT, randomized clinical trial; SAE, serious adverse event; and SAH, subarachnoid hemorrhage. Literature search topic: Temperature

Table XXXII. Nonrandomized Trials, Observational Studies, and/or Registries of Hypothermia

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
ReCCLAIM I Horn CM, et al. ³⁷² 2014 <u>23468538</u>	Study type: Single- arm study, open- label, single site of hypothermia in patients treated with thrombectomy; endovascular cooling Size: N=20	Inclusion criteria: AIS, age 18–85 y, ASPECTS 5–7 on pretreatment imaging, M1/M2 occlusion or ICA T occlusion, presentation within 8 h of symptom onset Exclusion criteria: Mild cognitive impairment, IVC filter, end-stage renal failure on HD, anaphylaxis to iodinated contrast, h/o ventricular arrhythmia leading to	 1° end point: Feasibility and safety of intravascular hypothermia after reperfusion Results: Three patients developed new hemorrhages on the 24 h CT scan, one of which was symptomatic Six patients died due to malignant cerebral edema Pneumonia occurred in 25% of patients, UTI occurred in 20% of patients, and DVT in 1 patient 	Endovascular cooling is possible after intervention for stroke, but there are no data to suggest it improves outcome

	cardiac arrest,				
	bleeding diathesis				

Abbreviations: ASPECTS indicates Alberta Stroke Program Early Computed Tomography Score; CT, computed tomography; ICA T, internal carotid artery terminus; HD, hemodialysis; IVC, inferior venal cava.; DVT, deep vein thrombosis; UTI, urinary tract infection; HD, hemodialysis; AIS, acute ischemic stroke; and y, years Literature search topic: Temperature

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
COOLIST Geurts M, et al. ¹³⁶ 2017 <u>27856954</u>	 Aim: Safety and feasibility of surface cooling Study type: Open-label multicenter RCT Size: N=22 (stopped early due to poor recruitment) 	Inclusion criteria: AIS, RX within 4.5 h of stroke onset; NIHSS≥6 Exclusion criteria: ICH, any conditions that might be exacerbated by hypothermia (i.e., bleeding diatheses), bradycardia, hypoxia	Intervention: Cooled IV fluids following by surface cooling within 4.5 h of symptom onset, 3 different temperature goals (34.0°C, n=5; 34.5°C, n=6; 35.0°C, n=5) Comparator: Standard care (n=6)	1° end point: Safety and feasibility – could only cool to 35.0, not 34.5, with surface cooling Safety end point: Increased risk of PNA – absolute increase 53% (28%–79%; <i>P</i> =0.002)	Time to target temperature: no patients randomized to 34.0°C achieved that goal, only 1 patient achieved the goal of 34.5	Shivering occurred in all patients	 Hypothermia is difficult to achieve with surface cooling There is an increased risk of PNA with hypothermia
ICTUS2 Lyden P, et al. ¹³⁵ 2016 <u>27834742</u>	Aim: Safety and feasibility of endovascular cooling Study type: Multicenter single-blind RCT Size: N=120	Inclusion criteria: AIS treated with alteplase; NIHSS ≥7 and ≤20 for left brain stroke and ≤24 for right brain stroke	Intervention: Cooled IV fluids followed by insertion of endovascular cooling device (n=63) Comparator: Standard care (n=57)	1° end point: mRS 0–1 at 90 d and the proportion of patients with mRS 0–1 at 90 d was similar (33% vs. 38%; 0.81; 0.36–1.85) Safety end point: Trends to increased mortality (15.9% vs. 8.8%; OR, 1.95; 95% CI, 0.56–7.79) and PNA (19.0% vs.	None	 Relatively small study and underpowered for the primary outcome Patients received meperidine, buspirone and surface warming 	Increased risk of PNA

Table XXXIII. Randomized Clinical Trials of Hypothermia

		Exclusion criteria: Prestroke mRS		10.5%; OR, 1.99; 95% Cl 0.63–6.98) in hypothermic		to prevent shivering	
		>1, contraindica- tions to hypothermia, item 1a on		patients			
Su Y, et al. ³⁷³ 2016 <u>26696645</u>	Aim: Evaluate hypothermia in malignant MCA infarction Study type: Single-center RCT, not blinded Size: N=33	NIHSS >1 Inclusion criteria: • Age 18–80 y • RX within 48 h of onset • Infarct at least 2/3 MCA territory on MRI or CT • NIHSS ≥15 for non-dominant hemisphere or NIHSS ≥20 for dominant hemisphere • Reduced LOC (NIHSS≥1 on item 1a) • Unable to undergo DC Exclusion criteria: • Premorbid mRS >2 • Hemorrhagic conversion >1/3 MCA territory with space occupying effect • GCS<6;	Intervention: Hypothermia to 33°C–34°C for 24–72 h using endovascular catheter (n=16) Comparator: Standard medical care with goal temperature 36.5°C–37.5°C (n=17)	 1° end point: Feasibility and all-cause mortality and mRS at 6; mortality was similar in both groups (8/16 vs. 7/17) Survivors treated with hypothermia achieved better neurological outcomes at 6 mo (OR, 10.5; 95% CI, 0.9–121.4; adjusted OR, 4.794; 95% CI, 0.323–71.103) Safety end point: More complications with hypothermia group (<i>P</i><0.001) 	N/A	 Very small study No difference in PNA with hypothermia Patients were not treated with decompressive hemicraniectomy Patients were not treated with decompressive hemicraniectomy Hypothermia was initiated rather late in the course of stroke (an average of 42 h) 	Hypothermia was associated with a trend toward better outcomes in survivors, but there were many more complications

HARIS Hong JM, et al. ³⁷⁴ 2014 <u>24203846</u>	Aim: Hypothermia after recanalization Study type: RCT with randomization by center Size: N=75	improving symptoms • Both pupils fixed and dilated • Other brain lesions • Platelets <75K • Severe coagulopathy Inclusion criteria: IA RX; NIHSS ≥10; DWI confirmation of infarct; recanalization (TICI ≥2b) within 6 h of symptom onset Exclusion criteria: Not specified	Intervention: Surface cooling to 34.5°C– 35.0°C for 48 h (n=39) Comparator: Normothermia (n=36)	1° end point: More patients treated with hypothermia had a good outcome (mRS 0–2) at 3 mo; 45% vs. 23% (<i>P</i> =0.017); OR, 3.0 (95% Cl, 1.02–8.90; <i>P</i> =0.047) Safety end point: Similar mortality in both groups (15% vs. 14%)	 Less HT, with no HT in 39% of hypothermia- treated patients and no HT in 14% standard care group (P=0.016) Less cerebral edema with hypothermia (no cerebral edema in 54% with hypothermia and no cerebral edema in 17% with standard of care, P=0.001) 	 Relatively small study done in 2 centers Trends toward more favorable characteristics at baseline in the hypothermia group 	Therapeutic hypothermia after recanalization is associated with less HT, less cerebral edema and better outcomes at 3 mo • Further studies will need to be done to confirm these results
Piironen K, et al. ¹³⁷ 2014 <u>24436240</u>	Aim: Safety and feasibility of mild hypothermia Study type: RCT Size: N=36	Inclusion criteria: AIS treated with alteplase; NIHSS 7–20 Exclusion criteria: mRS>2; CHF; angina, sepsis, ICH	Intervention: Hypothermia to 35°C with surface cooling and IV cold saline (n=18) Comparator: Standard of care/normother mia (n=18)	1° end point: Feasibility: number of patients with temperature <36°C for >80% of the cooling period was 15/18 (83%) Safety end point: AEs were more common in hypothermia group (19 vs. 12), with pneumonia occurring in 39% vs. 11%; <i>P</i> =0.054	No difference in good outcome (mRS 0–2) at 3 mo (7/18 [39%] in each group)	Trend towards more PNA with hypothermia (39% vs. 11%, <i>P</i> =0.054)	Increased risk of PNA with hypothermia

COOLAID Ovesen C, et al. ³⁷⁵ 2013 23278712	Aim: Feasibility study Study type: RCT (2 centers) Size: N=31	Inclusion criteria: Age≥18; NIHSS≥5 and ≤18; RX within 24 h of symptoms onset; stroke by CT or MRI Exclusion criteria: mRS≥3; >50% MCA territory; severe concomitant disease	Intervention: Endovascular cooling (n=7) or surface cooling (n=10) targeting temperature of 33°C Comparator: Normothermia (n=14)	1° end point: Safety; feasibility: endovascular cooling achieves goal temperature more quickly than surface cooling Safety end point: More bradycardia in cooled patients (65% vs. 0%; <i>P</i> =0.0001); Trend towards more PNA in cooled patients (35% vs. 9%, <i>P</i> =0.09)	mRS at 90 d was 3.0 (1–6) in cooled patients and 1.5 (1–6) in controls	Small study	Hypothermia was not associated with clinical benefit but was associated with more AEs
ICTUS-L Hemmen TM, et al. ¹³⁸ 2010 <u>20724711</u>	Aim: Feasibility and safety of hypothermia Study type: RCT Size: N=58	Inclusion criteria: AIS and RX with alteplase within 6 h Exclusion criteria: Contraindication s to hypothermia	Intervention: 24 h of endovascular cooling (n=28) Comparator: No active cooling (n=30)	1° end point: Safety Safety end point: Increased PNA in hypothermia group (50% vs. 10%; <i>P</i> =0.001) and more patients with at least 1 SAE (75% vs. 43.3%; <i>P</i> =0.018)	90-d mortality was similar in both groups (21.4% vs. 16.7%) as was good outcome (mRS 0–1), which occurred in 5/28 in the hypothermia group and 7/30 in the normothermia group	Small study Patients received meperidine, buspirone and surface warming to prevent shivering	There is no signal of clinic benefit in this study, and hypothermia was associated with a significant risk of PNA

Abbreviations: AE indicates adverse event; AIS, acute ischemic stroke; CHF, congestive heart failure; CT, computed tomography; DC, decompressive craniectomy; DHC, decompressive hemicraniectomy; DWI, diffusion-weighted imaging; GCS, Glasgow Coma Scale; h, hour; HT, hemorrhagic transformation; IA, intra-arterial; ICH, intracerebral hemorrhage; IV, intravenous; LOC, level of consciousness; MCA, middle cerebral artery; MRI, magnetic resonance imaging; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PNA, pneumonia; RCT, randomized clinical trial; RX, treatment; SAE, serious adverse event; and TICI, thrombolysis in cerebral infarction. Literature search topic: Temperature

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ENCHANTED Anderson CS, et al. ¹⁴³ 2016 <u>27161018</u>	Aim: Determine if reduced-dose alteplase would be non-inferior to standard-dose alteplase Study type: RCT (open label) Size: N=3310	Inclusion criteria: Patients with disabling stroke symptoms within 4.5 h of onset who were candidates for IV alteplase as per approved indications Exclusion criteria: Pre-existent disability; hemorrhage on CT scan; high risk of bleeding	Intervention: Alteplase 0.6 mg/kg up to 60 mg (n=1653) Comparator: Alteplase 0.9 mg/kg up to 90 mg (n=1654)	1° end point: mRS 2–6 at 90 d: 53.2% vs. 51.1%; OR, 1.09; 95% CI, 0.95– 1.25; <i>P</i> =0.51 Safety end point: sICH: 1% vs. 2.1%	 Ordinal shift analysis of mRS scores: OR, 1.0; 95% CI, 0.89– 1.13; <i>P</i>=0.04 for non-inferiority Mortality at 90 d: 8.9% vs. 10.3%, <i>P</i>=0.07 	Open label design Large proportion of Asian patients	Low-dose IV alteplase did not meet the non- inferiority end point for the reduction of death and disability at 90 d in comparison to standard-dose IV alteplase
IST-3 IST-3 Collaborative Group ¹⁴² 2012 <u>22632908</u>	Aim: Determine whether alteplase would benefit patients who did not meet license criteria for alteplase (mainly older than 80 y and up to 6 h from onset) Study type: RCT (open control) Size: N=3035	Inclusion criteria: Disabling stroke symptoms within 6 h of onset Exclusion criteria: Hemorrhage on CT scan; prohibitive risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=1515) Comparator: Open control (n=1520)	1° end point: OHS 0–2 at 6 mo: 37% vs. 35%; OR, 1.13; 95% CI, 0.95–1.35; <i>P</i> =0.18 Safety end point: sICH: 7% vs. 1%	Ordinal shift in OHS scores at 180 d: OR, 1.27; 95% CI, 1.10– 1.47; <i>P</i> =0.001)	This trial enrolled patients without established indication for IV alteplase (e.g., age>80 y, time beyond 4.5 h) in Europe	IV alteplase did not meet the primary efficacy end point but improved outcomes based on an ordinal shift in the distribution of the OHS scores

Table XXXIV. Randomized Clinical Trials Evaluating Intravenous Alteplase for Treatment of Acute Ischemic Stroke*

EPITHET Davis SM, et al. ⁹³ 2008 <u>18296121</u>	Aim: Establish the effect of IV alteplase on lesion growth, reperfusion, and clinical outcome in patients with radiological penumbra 3–6 h after stroke onset Study type: RCT Size: N=101	Inclusion criteria: Disabling stroke symptoms 3–6 h from onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=52) Comparator: Placebo (n=49)	1° end point: Infarct growth at 90 d by MRI: NS Safety end point: sICH: N/A	• mRS 0–1: 36% vs. 21% (P=0.15) • Reperfusion was more common with alteplase than with placebo and was associated with less infarct growth (P=0.001), better neurological outcome (P<0.0001), and better functional outcome (P=0.010) than was no reperfusion	 Small size Primary analysis was per protocol 	 The trial focused primarily on the value of MRI for patient selection Alteplase was associated with increased reperfusion in patients who had mismatch and a trend to less infarct growth
ECASS 3 Hacke W, et al. ¹⁴⁴ 2008 <u>18815396</u>	Aim: Determine the efficacy of alteplase between 3 and 4.5 h of stroke onset Study type: RCT Size: N=821	Inclusion criteria: Disabling stroke symptoms 3–4.5 h from onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding, including: NIHSS >25, history of previous stroke	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=418) Comparator: Placebo (n=403)	1° end point: mRS 0–1 at 90 d: 52.4% vs. 45.2%; OR, 1.34; 95% CI, 1.02– 1.76; <i>P</i> =0.04 Safety end point: sICH: 2.4% vs. 0.2%	 Global outcome analysis (algorithm for chances of favorable outcome): 1.28; 95% CI, 1.00– 1.65; <i>P</i>=0.05 Mortality at 90 d: 7.7% vs. 8.4% (<i>P</i>=0.68) 	No difference in the rate of other serious adverse events	IV alteplase was superior to placebo in improving functional outcomes when administered between 3 and 4.5 h from stroke onset

ATLANTIS A Clark WM, et al. ³⁷⁶ 2000 <u>10753980</u>	Aim: Determine the safety and efficacy of alteplase up to 6 h after stroke onset Study type: RCT Size: N=142	and diabetes; use of warfarin regardless of INR Inclusion criteria: Disabling stroke symptoms within 6 h of onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; high risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=71) Comparator: Placebo (n=71)	 1° end point: NIHSS score improvement by 4 points at 24 h: 40% vs. 21%; <i>P</i>=0.02 NIHSS score improvement by 4 points at 30 d: 60% vs. 75%; <i>P</i>=0.05 Safety end point: sICH: 11% vs. 0% 	Mortality at 90 d: 23% vs. 7% (<i>P</i> =0.01)	The trial was stopped by the DMSB because of safety concerns in the 5- to 6-h group	 IV alteplase administered within 6 h had early but not sustained benefit Only a small minority were treated within 3 h The small sample size limited power and reliability
ATLANTIS B Clark WM, et al. ³⁷⁷ 1999 <u>10591384</u>	Aim: Determine the safety and efficacy of alteplase 3-5 h after stroke onset Study type: RCT Size: N=613 (547 treated within 3–5 h)	Inclusion criteria: Disabling stroke symptoms 3–5 h from onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=307; n=272 within 3– 5 h) Comparator: Placebo (n=306, n=275 within 3– 5 h)	1° end point: NIHSS score ≤1 at 90 d: 34.5% vs. 34%; <i>P</i> =0.89 (34% vs. 32%; <i>P</i> =0.65 per protocol within 3–5 h) Secondary end point: mRS 0–1 at 90 d: 41.7% vs. 40.5%; <i>P</i> =0.77 (42.3% vs. 38.9%; <i>P</i> =0.42 per protocol within 3–5 h) Safety end point: sICH: 6.7% vs. 1.3% (7% vs. 1.1% per protocol within 3–5 h)	Mortality at 90 d: 11% vs. 6.9% (<i>P</i> =0.09)	More than 80% of the patients were enrolled after 3 h	 IV alteplase was not beneficial within the 3- to 5-h window IV alteplase was beneficial in the small subgroup of patients treated within 3 h
ECASS II Hacke W, et al. ³⁷⁸ 1998 <u>9788453</u>	Aim: Determine the safety and efficacy of alteplase up to 6 h after stroke onset	Inclusion criteria: Disabling stroke symptoms within 6 h of onset	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=409)	1° end point: mRS 0–1 at 90 d: 40.3% vs. 36.6%; OR, 1.2; 95% Cl, 0.9–1.6; <i>P</i> =0.28	mRS scores dichotomized for death or dependency (post hoc	Small minority of patients treated within the first 3 h	IV alteplase was not significantly beneficial when therapeutic

	Study type: RCT Size: N=800	Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Comparator: Placebo (n=391)	Safety end point: sICH: 8.8% vs. 3.4%	analysis): 54.3% in the alteplase group and 46.0% in the placebo group had favorable outcomes (score 0–2; absolute difference 8.3%, <i>P</i> =0.024) • Mortality: no difference at 90		window was extended to 6 h
ECASS Hacke W, et al. ³⁷⁹ 1995 <u>7563451</u>	Aim: Determine the safety and efficacy of alteplase up to 6 h after stroke onset Study type: RCT Size: N=620	Inclusion criteria: Disabling stroke symptoms within 6 h of onset Exclusion criteria: Age>80 y; hemorrhage on CT scan; infarction >1/3 of MCA territory on CT scan; high risk of bleeding	Intervention: Alteplase 1.1 mg/kg up to 100 mg (n=313) Comparator: Placebo (n=307)	1° end point: •Median BI at 90 d: 75 vs. 85; <i>P</i> =0.99 •Median mRS at 90 d: 3 vs. 3; <i>P</i> =0.41 Safety end point: Parenchymal hematoma: 19.8% vs. 6.9%	N/A	Many patients with protocol violations (N=109) were included in the ITT analysis	Alteplase was not beneficial on the ITT analysis when patients with protocol violations were excluded from the target population analysis; there was a significant difference in favor of alteplase in the median mRS and mRS 0–1 (although not significant on the median BI score)
NINDS NINDS Stroke Study rt-PA Group ⁸⁷ 1995	Aim: Determine the safety and efficacy of alteplase within 3 h after stroke onset	Inclusion criteria: Disabling stroke symptoms within 3 h of onset	Intervention: Alteplase 0.9 mg/kg up to 90 mg (n=312)	 1° end point: Global test of neurological function at 90 d (Bl, mRS, GOS, NIHSS) OR, 1.9; 95% Cl, 1.3– 	Mortality at 90 d: alteplase 17% vs. placebo 21% (<i>P</i> =0.30)	The trial was composed of two parts, and parts 1 and 2 had different	IV alteplase was superior to placebo in improving functional
<u>7477192</u>	Study type: RCT		Comparator: Placebo (n=312)	2.9; <i>P</i> =0.002		primary end points	outcomes when administered

Size: N=624	Exclusion	• mRS 0–1 at 90 d: 39%	within 3 h of
	criteria:	vs. 26%; OR, 2.4; 95%	stroke onset
	Hemorrhage on	CI,1.5–3.7; <i>P</i> <0.001	
	CT scan; high		
	risk of bleeding	Safety end point: sICH:	
	-	6.4% vs. 0.6%	

*Trials with ≤100 subjects are not included

Abbreviations: BI, Barthel index; CI, confidence interval; CT, computed tomography DMSB, Data Monitoring and Safety Board; GOS, Glasgow Outcome Score; h, hour; ITT, intentionto-treat; IV, intravenous; MCA, middle cerebral artery; MRI, magnetic resonance imaging; mRS, modified Rankin scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NS: not significant; OHS: Oxford handicap scale; OR, odds ratio; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; and y, years. Literature search topic: Alteplase, IV, stroke

Table XXXV. Randomized Clinical Trials of Intravenous Alteplase for Mild Stroke 3–4.5 Hours

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ECASS III: additional subgroups Bluhmki E, et al. ¹⁴⁵ 2009 <u>19850525</u>	Aim: To seek evidence of confounding factors or subgroups that might differentially affect treatment outcome Study type: RCT Size: N=821 (total); according to NIHSS: 0–5, 66(I)/62(C); 6–10, 169(I)/148(C); 11–15, 85(I)/77(C); 16–20, 77(I)/76(C); >20, 21(I)/40(C)	Inclusion criteria: • Clinical diagnosis of ischemic stroke causing a measurable neurological deficit defined as impairment of language, motor function, cognition and/or gaze, vision or neglect • Onset of symptoms between 3 and 4 h prior to initiation of	Intervention: Intravenous alteplase (0.9 mg/kg, maximum dose 90 mg over 60 min with initial 10% of dose given as bolus over 1 min) (n=418) Comparator: Standard care – no intravenous heparin, oral anticoagulants, aspirin, or volume expanders during the first	1° end point: mRS 0–1 at 90 d (OR, 95% CI) • Overall: 1.34 (1.02– 1.76) ¹⁴⁴ • According to NIHSS: 0– 9, 1.28 (0.84–1.96); 10– 19, 1.16 (0.73–1.84); ≥20, 2.32 (0.61–8.90); interaction P =0.63 Safety end point: Symptomatic intracranial hemorrhage (NINDS definition) • Overall: 2.38 (1.25– 4.52) ¹⁴⁴ • According to NIHSS: 0– 9, 3.04 (0.82–11.22); 10– 19, 2.18 (096–4.98); ≥20,	 NIHSS 0–1 at 90 d Overall: 1.33 (1.01–1.75) ¹⁴⁴ According to NIHSS: 0–9, 1.17 (0.77– 1.78); 10–19, 1.32 (0.82– 2.12); ≥20, 1.88 (047–7.52) Global outcome statistic at 90 d Overall: 1.28 (1.00–1.65) ¹⁴⁴ According to NIHSS 0–9: 1.12 (0.77– 1.64); 10–19: 	Only 128 patients NIHSS 0–5, not analyzed separately	No interaction of benefit or safety with stroke severity

administration of study drug, and others Exclusion criteria: Minor neurological deficit or symptoms rapidly improving before start of infusion, and others	24 h; subcutaneous heparin (≤10,000 IU), or of equivalent doses of low- molecular- weight heparin, was permitted for DVT prophylaxis (n=403)	3.03 (0.52–17.50); interaction <i>P</i> =0.89	1.15 (0.77– 1.71); ≥ 20: 1.76 (0.44–7.15) • Mortality at 90 d Overall: 0.90 (0.54–1.49) ¹⁴⁴ According to NIHSS: 0–9, 2.70 (0.54– 13.53); 10–19, 0.81 (0.41– 1.59); ≥20, 1.03 (0.37–2.87); interaction	
			interaction P=0.40	

Abbreviations: C indicates control; CI, confidence interval; d, days; DVT, deep vein thrombosis; h, hours; HR, hazard ratio; I, intervention; IV, intravenous; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NINDS, National Institute of Neurological Disorders and Stroke; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk. Literature search topic: Intravenous alteplase for mild stroke 3-4.5 hours

Table XXXVI. Nonrandomized Trials, Observational Studies, and/or Registries of Intravenous Alteplase 3–4.5 Hours for Mild Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
GWTG Romano JG, et	Study type: Registry	Inclusion criteria:	End Points: Discharge home, independent ambulation,	Good functional outcomes, mortality, and risk of sICH are the same in
al. ¹⁴⁷	of hospitalized patients with stroke	Final diagnosis of acute ischemic stroke	death, sICH	mild stroke treated 0–3 h and 3–4.5
2015			Results:	h
<u>25642650</u>	Size: N=7621	Exclusion criteria:	Discharge home:	
	patients with NIHSS	 Less than 75% 	• 0–3 h: 70.3%%	
	≤5 treated with IV alteplase within 4.5 h	completion on medical history	• 3–4.5 h: 71.6%	
		variables, arrived	Independent ambulation	
		beyond 4.5 h from	• 0–3 h: 69.6%	
		symptom onset, not treated with	• 3–4.5 h: 70.2%	
		alteplase,	Death	
		NIHSS>5, missing an NIHSS score	• 0–3 h: 1.3%	

		• Did not arrive through the emergency department, not discharged from the same hospital, time to treatment longer than 4.5 h or missing	• 3–4.5 h: 1.3% sICH • 0–3 h: 2.0% • 3–4.5 h: 1.4%	
SITS-ISTR Ahmed N, et al. ¹⁴⁶ 2010 <u>20667790</u>	Study type: Registry of patients treated with IV alteplase for acute ischemic stroke Size: N=23,942 between 12/2002 and 2/2010; N=2376 treated 3–4.5 h after symptom onset	Inclusion criteria: Ischemic stroke and were treated with IV alteplase within 4.5 h after symptom onset Exclusion criteria: European Summary of Product Characteristics criteria	1° end point: mRS at 3 mo Results: Baseline NIHSS ≤5 • 0–3 h: mRS 0–1, 71% • 3–4.5 h: mRS 0–1, 72% Safety: Mortality at 3 mo Baseline NIHSS ≤5 • 0–3 h: mRS 0–1, 3% • 3–4.5 h: mRS 0–1, 4%	Good functional outcomes (mRS 0– 1) and risk of sICH are the same in mild stroke treated 0–3 h and 3–4.5 h

Abbreviations: CI indicates confidence interval; h, hours; HR, hazard ratio; IV, intravenous; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; and sICH, symptomatic intracerebral hemorrhage. Literature search topic: Intravenous alteplase for mild stroke 3-4.5 hours

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Adams RJ, et al. ¹⁴⁸ 2017 <u>28183857</u>	Study type: Observational case- control study Size: 832 Sickle cell disease cases and 3328 non-sickle cell disease controls (matched for age, sex and race)	Inclusion criteria: Get With the Guidelines Hospitalized Stroke Cases Exclusion criteria: N/A	 1° end point: Outcomes after IV alteplase Results: No difference in IV alteplase use (8.2% in cases vs 10.1% in controls, <i>P</i>=0.9818) No difference in rates of symptomatic ICH (4.9% in cases vs 3.2% in controls, <i>P</i>=0.4502) No difference in rates of in-hospital death (3.5% in cases vs 5.0% in controls, <i>P</i>=0.5654) 	• IV alteplase is safe and effective in adult patients with sickle cell disease

Table XXXVII. Nonrandomized trials, Observational Studies, and/or Registries of Sickle Cell Disease and IV Alteplase

Table XXXVIII. Nonrandomized Trials, Observational Studies of Antithrombotic Agents given within 24 hours after Intravenous Alteplase for the Treatment of Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Jeong HG, et al. ¹⁶⁶ 2016 <u>27521435</u>	Study type: Single- center, retrospective analysis of early antithrombotics (<24 h) in AIS + alteplase/EVT Size: N=712	Inclusion criteria: AIS and IV alteplase or EVT Exclusion criteria: Early sICH or systemic bleeding, grave prognosis, planned surgical treatment	 1° end point: Hemorrhagic transformation at 4-7 d post-treatment, mRS 0-1 at 3 mo Results: No increased odds of sICH (0.85; 0.35–2.10) or difference in mRS at 3 mo (1.09; 0.75–1.59) in patients with early initiation of antithrombotics 	 No increased risk of hemorrhage with early initiation of AP or AC therapy (<24 h) following IV alteplase or EVT compared to initiation >24 h Limitations include generalizability and selection bias

Abbreviations: AC indicates anticoagulant; AIS, acute ischemic stroke; AP, antiplatelet; d, days; EVT, endovascular therapy; h, hours; IV, intravenous; mRS, modified Rankin Scale; and sICH, symptomatic intracerebral hemorrhage.

Literature search topic: Intravenous Fibrinolysis

Table XXXIX. Randomized Clinical Trials Evaluating Intravenous Fibrinolytics Other Than Alteplase for Treatment of Acute IschemicStroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
NOR-TEST Logallo N, et al. ¹⁷⁰ <u>28780236</u>	Aim: To establish superiority of tenecteplase 0.4 mg/kg (single bolus) as compared with alteplase 0.9 mg/kg (10% bolus + 90% infusion/60 minutes) for patients with acute ischemic stroke Study Type: multicenter, prospective, open-label, blinded endpoint, phase 3 RCT Size: N=1107	Major Inclusion criteria: Age 18 years or older; Ischemic stroke with measurable deficit on NIHSS); treatment within 4½ hours of stroke onset, or Wake-Up Stroke- Treatment within 4½ hours after awakening based on FLAIR-DWI mismatch on MRI; eligible for bridging therapy before thrombectomy	Intervention: IV tenecteplase 0.4 mg/kg (single intravenous bolus) n=549 Comparator: IV alteplase 0.9 mg/kg (10% bolus + 90% infusion/60 minutes) n=551	1° end point:: mRS 0-1 at 3 months: tenecteplase : 354/549 (64%) alteplase: 345/551 (63%) OR 1.08; 95% CI, 0.84 - 1.38; <i>P</i> =.52 Safety endpoint: Symptomatic ICH at 24-36 hrs: tenecteplase: 3% alteoplase: 2% OR, 1.16; 95% CI, 0.51 - 2.68; <i>P</i> =0.70	NIHSS score of 0 or improvement of \geq 4 at 24 h: tenecteplase: 41.7% alteplase 38.8% OR, 1.12 (95% CI, 0.89-1.43; P=0.97)	 Only mild strokes: Median NIHSS 4 (IQR 2-8) 18% stroke mimics 4% had symptoms on awakening and had positive DWI-FLAIR mismatch given its superiority design to detect a 9% difference in the primary end point, this trial was not designed to establish noninferiority 	•Tenecteplase at a dose of 0·4 mg/kg has a similar safety and efficacy profile to alteplase in a stroke population predominantly composed of patients with minor neurological impairment and no major intracranial occlusion.

		Major					
		Exclusion					
		<u>Criteria:</u>					
		Premorbid mRS					
		≥3; Seizure at					
		stroke onset and					
		no visible					
		occlusion on					
		baseline CT;					
		large areas of					
		hypodense					
		ischaemic					
		changes on					
		baseline CT;					
		systolic blood					
		pressure >180					
		mm Hg or					
		diastolic blood					
		pressure >110					
		mm Hg despite					
		of blood					
		pressure					
		lowering					
		therapy; other					
		usual IV					
		alteplase					
		exclusions					
DIAS 4	Aim: Assess the safety	Inclusion	Intervention:	1° end point: mRS 0–2 at	Desmoteplase	Terminated	Desmoteplase
von Kummer R,	and efficacy of	criteria: NIHSS	Desmoteplase,	90 d*: 42% vs. 36%;	increased the	after enrollment	was not superior
et al. ¹⁶⁷	desmoteplase between 3	4–24; within 3–9	90 mcg/kg	adjusted OR, 1.45; 95%	recanalization	of 270 of 400	to placebo
2016	h and 9 h after stroke	h of symptom	(n=124)	Cl, 0.79–2.64; <i>P</i> =0.23	rate at 12 to 24	planned patients	 Patients
<u>27803391</u>	onset in patients with	onset; occlusion			h by an absolute	following the	recruited from
	occlusion or high-grade	or high-grade	Comparator:	Safety end point: sICH:	difference of 22.8% (<i>P</i> =0.02)	results of DIAS	North America,
		stenosis of a	Placebo (n=128)	5% vs. 2%	22.0% (P-0.02)	3	

	stenosis in major cerebral arteries Study type: RCT Size: N=270	major cerebral artery on MRA/CTA Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarction >1/3 of MCA territory or >1/2 of ACA or PCA territory; high risk of				No safety concerns	Latin America and Europe
DIAS 3 Albers GW, et al. ¹⁶⁸ 2015 <u>25937443</u>	Aim: Assess the safety and efficacy of desmoteplase between 3 h and 9 h after stroke onset in patients with occlusion or high-grade stenosis in major cerebral arteries Study type: RCT Size: N=492	bleeding Inclusion criteria: NIHSS 4–24; within 3–9 h of symptom onset; occlusion or high-grade stenosis of a major cerebral artery on MRA/CTA Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarction >1/3 of MCA territory or >1/2 of ACA or PCA territory; high risk of	Intervention: Desmoteplase, 90 mcg/kg (N=247) Comparator: Placebo (N=245)	1° end point: mRS 0–2 at 90 d*: 51% vs. 50%; adjusted OR, 1.20; 95% CI, 0.79–1.81; <i>P</i> =0.40. Safety end point: sICH: 3% vs. 2%	No differences in mortality (10% in both groups)	No safety concerns	Desmoteplase was not superior to placebo Patients recruited from Asia and Europe
ATTEST Huang X, et al. ⁸⁹ 2015 <u>25726502</u>	Aim: Assess the efficacy and safety of tenecteplase vs. alteplase within 4.5 h of stroke onset	bleeding Inclusion criteria: Indication for alteplase; within 4.5 h of	Intervention: Tenecteplase, 0.25 mg/kg single bolus, up to 25 mg (N=52)	1° end point: Percentage of penumbral tissue salvaged at 24–48 h: 68% vs. 68%; <i>P</i> =0.81	No differences in mRS at 30 or 90 d	Analysis was per protocol Extracranial bleeding: 8% vs. 0%	Tenecteplase 0.25 mg/kg appears to be as safe as

	Study type: RCT (Phase II) Size: N=104	symptom onset; available CTP at baseline Exclusion criteria: Any contraindication s for alteplase GFR<30 ml/min	Comparator: Alteplase, 0.9 mg/kg infusion, up to 90 mg (N=52)	Safety end point: sICH: 2% vs. 4%	• No difference in mortality at 90 d		standard-dose alteplase
DIAS-J Mori E, et al. ³⁸⁰ 2015 <u>26251244</u>	Aim: Assess the safety and tolerability of desmoteplase within 3 to 9 h of stroke onset in Japanese patients Study type: RCT (Phase II dose ranging) Size: N=193	Inclusion criteria: NIHSS 4–24; within 3–9 h of symptom onset; occlusion or high-grade stenosis of a major cerebral artery on MRA/CTA Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarction >1/3 of MCA territory or >1/2 of ACA or PCA territory; high risk of bleeding	Intervention: Desmoteplase, 70 mcg/kg (N=16); 90 mcg/kg (n=16) Comparator: Placebo (n=16)	1° end point: sICH within 72 h: 6% with 70 mcg/kg vs. 0% with 90 mcg/kg vs. 13% with placebo Safety end point: Primary end point was the safety end point	No increase in brain edema or other major adverse events	Dose ranging trial	Desmoteplase in doses of 70 mcg/kg or 90 mcg/kg appeared safe
Parsons M, et al. ⁹¹ 2012 <u>22435369</u>	Aim: Compare the effectiveness of two different doses of tenecteplase vs. alteplase in acute stroke patients within 6 h of symptom onset and selected by CTP	Inclusion criteria: Indication for alteplase; within 6 h of symptom onset; ≥20% mismatch by DWI/PWI or CTP; large intracranial	Intervention: Tenecteplase, 0.1 mg/kg single bolus, up to 10 mg (N=25) or 0.25 mg/kg single bolus, up to 25 mg (n=25)	Co-primary end points: • Percentage of perfusion lesion that was reperfusion at 24 h on MRI: 79% with tenecteplase (both doses combined) vs. 55% with alteplase; <i>P</i> =0.004 • NIHSS improvement at 24 h: 8±5 with	mRS 0–1 at 90 d: 72% with tenecteplase 0.25 mg/kg vs. 40% with alteplase	No differences in ICH or other serious adverse events	Both tenecteplase doses appeared superior to standard-dose alteplase for the studied end points

	Study type: RCT (phase IIb) Size: N=75	artery occlusion on CTA Exclusion criteria: Any contraindication s for alteplase	Comparator: Alteplase, 0.9 mg/kg infusion, up to 90 mg (n=25)	tenecteplase (both doses combined) vs. 3±6 with alteplase Safety end point: No sICH cases			
Haley EC, et al. ¹⁶⁹ 2010 <u>20185783</u>	Aim: Compare the effectiveness of three different doses of tenecteplase vs. alteplase in acute stroke patients within 3 h of symptom onset Study type: RCT (phase IIb/III) Size: N=112	Inclusion criteria: Indication for alteplase; within 3 h of symptom onset Exclusion criteria: Any contraindication s for alteplase	Intervention: Tenecteplase, 0.1 mg/kg (N=31), 0.25 mg/kg (N=31), and 0.4 mg/kg (n=19) Comparator: Alteplase 0.9 mg/kg infusion, up to 90 mg (n=31)	1° end point: mRS 0–1: 45% with 0.1 mg/kg, 48% with 0.25 mg/kg, 37% with 0.4 mg/kg and 42% with placebo; <i>P</i> >0.3 for all comparisons Safety end point: Total of 6 symptomatic ICHs: 3 of 19 (15.8%) in the 0.4 mg/kg group, 2 of 31 (6.5%) in the 0.25 mg/kg tenecteplase group, and none (0 of 31) in the 0.1 mg/kg tenecteplase group; by comparison, there was 1 of 31 (3.2%) symptomatic ICH in the rtPA group	N/A	Prematurely terminated due to slow recruitment	The 0.4 mg/kg dose was inferior; the other two doses appeared to be similar to standard dose alteplase
DIAS 2 Hacke W, et al. ⁹² 2009 <u>19097942</u>	 Aim: Assess the safety and efficacy of two doses of desmoteplase between 3–9 h after stroke onset in patients with radiological penumbra Study type: RCT (phase II dose-ranging) Size: N=193 	Inclusion criteria: NIHSS 4–24; ≥20% mismatch by DWI/PWI or CTP; within 3–9 h of symptom onset Exclusion criteria: Age>85 y; hemorrhage on CT or MRI; infarct core >1/3	Intervention: Desmoteplase, 90 mcg/kg (n=57) or 125 mcg/kg (N=66) Comparator: Placebo (n=63)	1° end point: Favorable clinical outcome at 90 d*: 47% with 90 mcg/kg vs. 36% with 125 mcg/kg vs. 46% with placebo; <i>P</i> =0.47 Safety end point: sICH: 3.5% with 90 mcg/kg vs. 4.5% with 125 mcg/kg vs. 0% with placebo	 Median changes in lesion volume: 90 mcg/kg desmoteplase 14% (0.5 cm³), 125 mcg/kg desmoteplase 11% (0.3 cm³), placebo 10% (- 0.9 cm³) Mortality rate was 5% for 90 mcg/kg 	Dose-ranging trial	The investigated doses of desmoteplase did not improve outcomes in patients with acute stroke and tissue-at-risk within 3–9 h from symptom onset

DEDAS Furlan AJ, et al. ⁹⁴ 2006 <u>16574922</u>	Aim: Assess the safety and efficacy of two doses of desmoteplase between 3–9 h after stroke onset in patients with radiological penumbra Study type: RCT (Phase II, dose-escalation)	of MCA territory on DWI or CTP; high risk of bleeding; ICA occlusion Inclusion criteria: NIHSS 4–20; DWI/PWI mismatch; within 3–9 h of symptom onset Exclusion criteria: Age>85	Intervention: Desmoteplase, 90 mcg/kg (n=14) or 125 mcg/kg (n=15) Comparator: Placebo (n=8)	1° end point: Rate of reperfusion on MRI after 4–8 h: favorable clinical outcome at 90 d*: 18% with 90 mcg/kg vs. 53% with 125 mcg/kg vs. 38% with placebo Safety end point: sICH:	desmoteplase, 21% for 125 mcg/kg desmoteplase, and 6% for placebo Favorable clinical outcome at 90 d*: 29% with 90 mcg/kg vs. 60% with 125 mcg/kg vs. 25% with placebo; <i>P</i> =0.02 in favor of the	Dose-escalation trial	Desmoteplase in doses of 90 mcg/kg or 125 mcg/kg appeared safe
	Size : N=104	y; hemorrhage on MRI; infarction >1/3 of MCA territory on DWI; high risk of bleeding		0% in all groups	125 mcg/kg dose		
DIAS Hacke W, et al. ⁹⁵ 2005 <u>15569863</u>	Aim: Assess the safety and efficacy of various doses of desmoteplase between 3–9 h after stroke onset in patients with radiological penumbra Study type: RCT (Phase II, dose-finding) Size: N=104	Inclusion criteria: NIHSS 4–20; DWI/PWI mismatch; within 3–9 h of symptom onset Exclusion criteria: Age>85 y; hemorrhage on MRI; infarction >1/3 of MCA territory on DWI; high risk of bleeding	Intervention: Desmoteplase, multiple doses (n=75) Comparator: Placebo (n=27)	1° end point: Rate of reperfusion on MRI after 4–8 h: 71% vs. 19%; <i>P</i> =0.001 (125 mcg/kg dose) Safety end point: sICH: 26.7% with fixed doses (i.e., not weight-adjusted) and 2.2% with weight- adjusted doses vs. 0% with placebo	Favorable clinical outcome at 90 d*: 60% vs. 47%; <i>P</i> =0.009 (125 mcg/kg dose)	Dose-finding trial	 Acceptable rate of sICH with doses of up to 125 mcg/kg Desmoteplase may confer improved rates of reperfusion by MRI criteria

*Defined as ≥8 points improvement on NIHSS (or 0 to 1), mRS (0 to 2), and Barthel Index (75 to 100). Abbreviations: ACA indicates anterior cerebral artery; CI, confidence interval; CT, computed tomography; CTA, computed tomography angiogram; CTP, computed tomography perfusion; DWI, diffusion weighted imaging; GFR, glomerular filtration rate; h, hours; ICA, internal carotid artery; ICH, intracerebral hemorrhage; MRA, magnetic resonance angiogram;

MRI, magnetic resonance imaging; mRS, modified Rankin scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NS, not significant; OR, odds ratio; PCA, posterior cerebral artery; PWI, perfusion weighted imaging; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; y, years. Literature search topic: IV lysis

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
NOR-SASS Nacu A, et al. ¹⁷¹ <u>27980128</u>	Aim: to demonstrate superiority of contrast- enhanced ultrasound treatment (sonothrombolysis) versus sham ultrasound treatment in consecutively admitted patients with acute ischemic stroke within 4.5 hours after stroke onset Study Type: multicenter, prospective, open-label, blinded endpoint, phase 3 RCT Size: N=183	Major Inclusion Criteria: Acute ischemic stroke patients ≥ 18 years, with or without visible arterial occlusion on computed tomography angiography (CTA) and treatable ≤ 4(½) hours after symptom onset Major Exclusion Criteria: Premorbid mRS ≥3; Primary endovascular treatment; Recent or unstable coronary ischemia or resting angina <7 days; Acute	Intervention: Contrast Enhanced Sonothrombolysi s with 2 MHz pulse-wave transcranial Doppler (TCD) ultrassund for 60 minutes and microbubbles plus alteplase/tenect eplase (n=93) Comparator: sham ultrasound, sham microbubbles (NaCl 0.9%) plus alteplase/tenect eplase (n=90)	6 1° end points defined in different ways: neurological improvement at 24 hours (3) and functional handicap at 90 days (3): All <i>P</i> 0.05 Safety end point: sICH 2/93 vs 4/90; <i>P</i> =0.13		Stopped prematurely (183 of planned 276) for lack of funding	Sonothrombolysi s was safe among unselected ischemic stroke patients with or without a visible occlusion on computed tomography angiography and with varying grades of clinical severity. There was no statistically significant clinical effect of sonothrombolysi s in this prematurely stopped trial.

 Table XL. Randomized Clinical Trials Of Adjuvant Sonothrombolysis (since 2013 AIS Guidelines)

Г				
	cardiac			
	insufficiency,			
	cardiac			
	insufficiency			
	class III/IV;			
	serious cardiac			
	arrhythmias;			
	Any right-left-			
	shunt, severe			
	pulmonary			
	hypertension			
	(PAP			
	>90 mmHg)			
	Moderate to			
	severe chronic			
	obstructive			
	pulmonary			
	disease			
	(COPD),			
	baseline O2			
	saturation			
	<80 %)			
	NOU 70			

Table XLI. Nonrandomized Trials, Observational Studies, and/or Registries of Endovascular Therapy

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Coutinho JM, et al. ³⁸¹ 2017 <u>28097310</u>	Study type: Post hoc-analysis Size: N=291 (N=160 ET and IV alteplase, N=131 ET alone)	Inclusion criteria: Two multicenter, prospective clinical trials using the Solitaire device: SWIFT and STAR registry Exclusion criteria: Patients in dataset	 1° end point: Reperfusion 90 d mRS 0–2 Mortality Results: No clinically meaningful differences between groups TICI 2b/3: ET+IV alteplase 84.1%, ET alone 84.7%. 90 d mRS 0–2: ET+IV alteplase 57.7%, ET alone 47.7% (<i>P</i>=0.1) 	 Similar treatment times, device passes, and emboli to new territory between groups Non-randomized patient sample, with local site variation in treatment protocols Approximately 1/4 of patients in ET+IV alteplase group were treated with reduced dose alteplase (0.6 mg/kg), although sensitivity analysis

		treated with Merci device	Mortality: ET+IV alteplase 8.1%, ET alone 12.2%	 excluding these patients found similar results Findings suggest that IV alteplase does not provide additional benefit in endovascular treatment of acute ischemic stroke from large vessel occlusion
Bush CK, et al. ¹⁷⁴ 2016 <u>26807742</u>	Study type: Meta- analysis Size: N=1287	Inclusion criteria: Meta-analysis of contemporary ET with stent retrievers vs. standard care for patients with acute ischemic anterior circulation stroke: MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Non-randomized trials, studies not reporting ORs or variances, studies where ET with new generation thrombectomy devices was not part of intervention	1° end point: Day 90 mRS 0–2 Results: OR for ET: 2.2 (95% CI, 1.66–2.98; <i>P</i> <0.0001)	 Improved functional outcomes and greater chance of functional outcome after ET with new generation thrombectomy devices Similar complication profiles and mortality between ET and standard care Treatment effect independent of IV alteplase administration Findings underscore impact of time dependence on treatment outcome but cannot provide precise time-point after onset of symptoms for futility Homogenous benefit across subgroups Findings strongly support recommendations for early ET for acute ischemic stroke patients with LVO, using new thrombectomy devices
SEER Campbell BC, et al. ¹⁷³ 2016 <u>26888532</u>	Study type: Meta- analysis Size: N=787	Inclusion criteria: Meta-analysis (patient-level data) of acute ischemic stroke trials in which Solitaire stent retriever was the only or the predominant device used:	 1° end point: Day 90 mRS ordinal analysis Results: mRS score improvement OR, 2.7 (95% CI, 2.0–3.5; P≤1×10⁻¹⁰) NNT of 2.5 for improvement in 1 grade of mRS score 	 No difference in secondary end points of sICH or mortality NNT of 4.25 for independent functional outcome, homogeneity of benefit across subgroups Revascularization rates 77% with Solitaire Reduced mortality after ET in patients ≥80 y 20% vs. 40%, adjusted OR: 3.7 (1.3–10.6) <i>P</i>=0.01,

		SWIFT PRIME, ESCAPE, EXTEND- IA, REVASCAT Exclusion criteria: Non-randomized trials, trials without imaging confirmation of LVO, trials where Solitaire was not the dominant device utilized initially, and others		 despite overall equivalence for mortality as a secondary outcome Study details results with Solitaire and does not evaluate other devices for thrombectomy Identifies robust benefit for Solitaire thrombectomy in acute ischemic stroke patients
HERMES Goyal M, et al. ¹⁷² 2016 <u>26898852</u>	Study type: Meta- analysis Size: N=1287	Inclusion criteria: Meta-analysis (patient level data) of ET vs. medical management for acute ischemic stroke due to LVO: MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Trials other than the 5 recent randomized trials listed	 1° end point: Day 90 mRS shift analysis Results: Adjusted cOR: 2.49 (95% CI, 1.76–3.53; P<0.0001) NNT for 1 point reduced disability on mRS is 2.6 	 Shows clinical benefit from thrombectomy across wide range of age and stroke severity 71% with TICI 2b/3 result after ET Mortality, sICH, and parenchymal hematoma equivalent between groups Homogeneous benefit across pre- specified subgroups, including age>80 y, tandem occlusions, ASPECTS or NIHSS score Benefit irrespective of IV alteplase administration Patient-level data utilized for analysis from studies utilizing current clinical practice patterns. Consistency of benefit suggests that results likely apply to broader patient range after acute ischemic stroke from LVO
Grech R, et al. ³⁸² 2016 <u>26597570</u>	Study type: Meta- analysis Size: Solitaire N=762, Trevo N=210	Inclusion criteria: Meta-analysis of studies utilizing Solitaire or Trevo in the treatment of acute ischemic stroke	1° end point: • Recanalization rates • 90 d mRS 0–2 • sICH Results:	 Aggregates information from studies regarding stent retrievers to increase statistical power Evaluates only Solitaire and Trevo devices

		Exclusion criteria: Case reports or series, patients treated without ET, trails utilizing pooled data from other sources, animal studies, and others	 No clinically meaningful differences between Solitaire and Trevo groups Recanalization 86.7% vs. 80.8% (Solitaire vs. Trevo) Weighted mean 1.9 passes vs. 2.5 passes (Solitaire vs. Trevo) Functional outcome in 52.1% vs. 47.6% (Solitaire vs. Trevo) slCH 7% vs. 8.5% (Solitaire vs. Trevo) 	 Only two RCTs included; remainder are observational or non- RCT designs Includes trials utilizing TIMI 2/3 recanalization targets Supports the use of stent retrievers to achieve functional outcomes with good safety profiles, without clear differences between Solitaire and Trevo
Rodrigues FB, et al. ³⁸³ 2016 <u>27091337</u>	Study type: Meta- analysis Size: N=2925	Inclusion criteria: Meta-analysis of ET vs. medical management for acute ischemic stroke due to LVO: IMS II, MR RESCUE, SYNTHESIS Expansion, MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA, THERAPY, THRACE Exclusion criteria: Observational studies, non- controlled or non- randomized interventional studies, studies without mechanical thrombectomy in intervention arm or IV alteplase in control arm	1° end point: • 90 d mRS 0–2 • Mortality Results: • ET functional outcome risk ratio: 1.37 (95% Cl, 1.14–1.64) • No mortality differences risk ratio: 0.9 (95% Cl, 0.76–1.06) • Analysis restricted to MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA, THERAPY, THRACE: functional outcome risk ratio: 1.56 (95% Cl, 1.38–1.75), mortality risk ratio: 0.86 (95% Cl, 0.69–1.06)	 Provides evidence for the benefit of ET, particularly stent retriever thrombectomy, over medical management alone for treatment of acute ischemic stroke from LVO Includes both THERAPY and THRACE but only data from results presented in press or meetings Heterogeneous group of studies included, with variable endovascular treatment methods. Analyzed further as studies published prior to 2015 and those published during or after 2015
Saver JL, et al. ³² 2016	Study type: Meta- analysis	Inclusion criteria: Meta-analysis of time	1° end point: 90 d mRS ordinal shift	• Defines a time window of <7.3 h to arterial puncture for benefit of ET for
<u>27673305</u>	Size: N=1287	to treatment of ET vs. medical management	Results: • ET mRS 2.9 (95% CI, 2.7–3.1);	acute ischemic stroke patients with LVO

		for acute ischemic stroke due to LVO: MR CLEAN, ESCAPE, EXTEND- IA, SWIFT PRIME, REVASCAT Exclusion criteria: Trials other than the 5 recent randomized trials listed	 standard care mRS 3.6 (95% Cl, 3.5–3.8) mRS scale distribution declined with longer time to treatment. Absolute risk difference for reduced disability 39.2% at 3 h, 30.2% at 6 h, 15.7% at 8 h; benefit absent after 7.3 h 	 No sub group analysis by trial to determine which imaging criteria selected patients who benefitted after 6 h most accurately Time dependence for therapy highlights need for initiation of therapy as rapidly as possible after onset of symptoms, with benefit greatest for treatment initiation <2 h from symptom onset In hospital processes directly associated with improved functional outcome Mortality, sICH, and parenchymal hematoma rates did not vary with longer delay to reperfusion
Touma L, et al. ³⁸⁴ 2016 <u>26810499</u>	Study type: Systematic review and meta-analysis Size: N=1287	Inclusion criteria: Systematic review and meta-analysis to quantify benefits and risks of using stent retrievers with alteplase compared to alteplase alone for acute ischemic stroke from large vessel occlusion, MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Observational studies, case reports, reviews, abstracts, and others	1° end point: 90 d mRS 0–2 Results: Stent retriever patients: • Greater functional outcome, RR: 1.72 (95% CI, 1.48–1.99) • Greater odds of 1-unit decrease in 90 d mRS, pooled OR: 2.03 (95% CI, 1.65–2.50)	 Mortality, sICH, parenchymal hematoma inconclusive between groups (wide CI), no detectable differences between groups Asserts the benefit of stent retriever thrombectomy for treatment of acute ischemic stroke patients with LVO
Badhiwala JH, et al. ³⁸⁵ 2015	Study type: Meta- analysis	Inclusion criteria: Meta-analysis of ET vs. medical	1° end point: • Day 90 mRS 0–2 • Ordinal mRS improvement	Confirms improved functional outcomes and higher rates of angiographic revascularization at 24
<u>26529161</u>	Size: N=2423	management for	Revascularization at 24 h	

		acute ischemic stroke: IMS II, MR RESCUE, SYNTHESIS Expansion, MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA Exclusion criteria: Non-randomized studies, retrospective series, pilot studies, abstracts, studies that did not include IV alteplase for controls or ET for interventions, and others	 sICH within 90 d All-cause mortality at 90 d Results: mRS score 0–2: 44.6% for ET vs. 31.8% for standard care, OR, 1.71 (95% CI, 1.18–2.49; P=.005) ET treatment benefit across all mRS scores, OR, 1.56 (95% CI, 1.14–2.13; P=.005) ET higher rates of angiographic revascularization at 24 h (75.8% vs. 34.1%; OR, 6.49 (95% CI, 4.79–8.79; P<.001)) Similar sICH and mortality 	 h for ET compared to IV alteplase alone No clinically meaningful difference between groups in symptomatic intracranial hemorrhage or all-cause mortality at 90 d Confirmation of LVO pre- procedurally increased chance of improved functional outcome after ET Benefit of ET was increased by concomitant use of IV alteplase
Chen CJ, et al. ³⁸⁶ 2015 <u>26537058</u>	Study type: Meta- analysis Size: N=2423	Inclusion criteria: Meta-analysis of outcomes in RCT of acute ischemic stroke patients undergoing ET: IMS II, MR RESCUE, SYNTHESIS Expansion, MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Single center, non- randomized trials, failure to compare ET to standard care directly	1° end point: Day 90 mRS 0–2 Results: • OR for ET, 1.71; <i>P</i> =0.005 • Subgroup analysis of 6 trials with LVO criteria: OR, 2.23 for d 90 mRS 0–2; <i>P</i> <0.00001	 Subgroup analysis of 2 trials without LVO selection criteria failed to demonstrate difference between groups in functional independence Angiographic revascularization achieved in 565 (56%) of 1,005 patients Similar slCH and mortality rates Heterogeneous treatment methods in ET group
Elgendy IY, et al. ³⁸⁷	Study type: Meta- analysis	Inclusion criteria: Meta-analysis of	1° end point: 90 d mRS 0–2	• ET associated with 45% relative and 13% absolute higher likelihood

2015 <u>26653623</u>	Size: N=2410	outcomes in RCT of ET for patients presenting within 4.5 h of symptom onset: IMS II, MR RESCUE, MR CLEAN, ESCAPE, EXTEND- IA, SWIFT PRIME, REVASCAT Exclusion criteria: Trials that prohibited IV alteplase before thrombectomy, non- randomized studies, retrospective series, and others	Results: For ET RR, 1.45 (95% CI, 1.22–1.72; <i>P</i> <0.0001)	of mRS 0–2 compared to standard care alone • Demonstrates the efficacy and safety of ET compared to standard care for acute ischemic stroke patients • Similar rates of sICH but a trend towards decreased mortality with ET (RR: 0.86, 95% CI: 0.72–1.02; <i>P</i> =0.09)
Fargen KM, et al. ³⁸⁸ 2015 <u>25432979</u>	Study type: Meta- analysis Size: N=183/N=1903	Inclusion criteria: Meta-analysis of outcomes in RCT of ET in acute ischemic stroke patients with LVO criteria and without LVO criteria: PROACT II, MELT, IMS III, SYNTHESIS, MR RESCUE, MR CLEAN Exclusion criteria: Non-randomized studies, retrospective series, comparison to historical controls	1° end point: Day 90 mRS 0–2 shift analysis Results: • LVO confirmation: OR, 1.67 (95% CI: 1.29–1.16, <i>P</i> =0.0001) • No LVO confirmation: OR, 1.27 (95% CI, 1.05–1.54; <i>P</i> =0.019)	 Identifies superior outcomes in patients undergoing ET, particularly with LVO demonstrated pre- procedurally Does not include contemporary ET trials, with the exception of MR CLEAN
Kumar G, et al. ³⁸⁹ 2015 <u>25271064</u>	Study type: Meta- analysis Size: N=2056 (IA	Inclusion criteria: Meta-analysis of published studies on stroke therapy for	 1° end point: Death or dependency (DoD), mortality Results: For entire population 	 Included endovascular and IV cases of basilar occlusion Suggests equivalence between endovascular therapies and IV
	N=1715, IV N=341)	basilar artery occlusion	Recanalization decreased: DoD RR: 0.67 (95% CI, 0.63–0.72)	treatment, but supports the benefit

		Exclusion criteria: Studies of LVO other than basilar artery, abstracts, case reports, reviews, meta-analyses, studies lacking outcome data, and others	Mortality RR: 0.49 (95% CI, 0.44–0.55) • For IA patients recanalized: DoD RR: 0.67; mortality RR: 0.53	of recanalization in patients with acute basilar occlusion
Marmagkiolis K, et al. ³³⁰ 2015 <u>26476611</u>	Study type: Meta- analysis Size: N=1287	Inclusion criteria: Meta-analysis of ET for ICA and M1 occlusions vs. standard care: MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, EXTEND-IA Exclusion criteria: Non-randomized studies, retrospective series, and others	1° end point: Day 90 mRS 0–2 Results: ET 42.6% vs. standard care 26.1% (<i>P</i> <0.0001), OR, 2.43 (95% CI, 1.9–3.09)	 Analysis restricted to acute ischemic stroke therapy in contemporary trials sICH and 90-d mortality equivalent between groups Confirms safety and efficacy of stent retriever use for ischemic stroke after large vessel occlusion
Yarbrough CK, et al. ³⁹¹ 2015 <u>26396032</u>	Study type: Systematic review and meta-analysis Size: N=2049	Inclusion criteria: Systematic review and meta-analysis to evaluate effect of ET on outcome for LVO patients: IMS II, MR RESCUE, SYNTHESIS Expansion, MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT Exclusion criteria: Non-randomized studies, case reports or series, and others	1° end point: 90 d mRS 0–2 Results: • All trials: pooled OR: 1.75 (95% CI: 1.2–2.54) • All trials requiring LVO confirmation: OR, 2.0 (95% CI, 1.48–2.71)	 Confirms benefit of ET for acute ischemic stroke patients compared to standard care alone Use of IV alteplase associated with improved outcomes (OR: 1.83, 95% CI: 1.46–2.31), no IV alteplase also increased odds for good outcome, but not statistically significant (OR: 1.59, 95% CI: 0.86–2.95) Effect of ET greater in subgroup with higher NIHSS Trend towards decreased mortality in ET group; similar sICH rates Treatment benefit if ET commenced before 6-8 h from onset

Almekhalfi MA,	Study type: Meta-	Inclusion criteria:	1° end point: TICI 2b/3, day 90 mRS 0–2	Heterogeneous ET techniques in studies included Analyzes comparative
et al. ³⁹² 2013 <u>22837311</u>	analysis Size: N=925 (MERCI N=357, Penumbra N=455, stent retriever N=113)	Meta-analysis of device-based trials to assess impact of recanalization on the outcome of ET Exclusion criteria: Studies investigating devices other than MERCI, Penumbra, or stent retrievers	Results: • Successful recanalization in 59.1% MERCI studies (95% CI, 49.3–77.7), 86.6% Penumbra studies (95% CI, 84.1– 93.8), and 92.9% stent retriever studies (95% CI, 90.9–99.9) • mRS 0–2 in 31.5% MERCI, 36.6% Penumbra, and 46.9% stent retriever	recanalization rates, procedural timing, and outcomes between various devices based on published trials • Minimal data available for procedure times for MERCI device, but Penumbra and stent retriever comparable in treatment times • References first generations of stent retrievers, and earlier generations of aspiration systems; does not reflect current practice patterns
Fields JD, et al. ³⁹³ 2011 <u>21990808</u>	Study type: Meta- analysis Size: N=334	Inclusion criteria: Meta-analysis of IA thrombolytics for MCA occlusion vs. placebo: PROACT, PROACT II, MELT Exclusion criteria: Studies utilizing mechanical thrombectomy techniques	1° end point: Day 90 mRS 0–1, 0–2; sICH Results: • IAT day 90 mRS 0–1: 31% vs. 20%, OR, 2.0 (95% CI, 1.2– 3.4; <i>P</i> =0.01) • IAT mRS 0–2: 43% vs. 31%, OR, 1.9 (95% CI, 1.2–3.0; <i>P</i> =0.01) • sICH: 11% vs. 2%, OR, 4.6 (95% CI, 1.3–16; <i>P</i> =0.02)	 Estimates benefit of endovascular therapy from intra-arterial lytic administration Endovascular therapy improved all functional outcome measures with similar mortality despite increased risk of sICH Supports efficacy and safety within 6 h of intra-arterial lytic therapy for MCA occlusions Heterogeneity in sample; MELT (compared to PROACT and PROACT II) treated patients earlier and with more mild strokes, and permitted guidewire maceration Urokinase not available in the US since October 2010 Many control patients would now receive IV alteplase; effect of intra-arterial thrombolytic compared to contemporary stroke therapy therefore uncertain

Abbreviations: ASPECTS indicates Alberta Stroke Program Early CT Score; CI, confidence interval; DoD, death or dependency; ET, endovascular therapy; GA, general anesthesia; IAT, internal carotid artery; IV, intravenous; LVO, large vessel occlusion; MCA, middle cerebral artery; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; NNT, number needed to treat; OR, odds ratio; sICH, symptomatic intracerebral hemorrhage; TICI, thrombolysis in cerebral infarction; TIMI, thrombolysis in myocardial infarction; RCT, randomized clinical trial; RR, relative risk; and y, years. Literature search topic: Endovascular interventions

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
AnSTROKE Lowhagen Henden P et al. ¹⁸¹ <u>28522637</u>	Aim: null hypothesis was that the anesthesia technique does not have an impact on neurological outcome, as long as severe hypotension during the procedure is avoided Study type: single-center, open-label, blinded end- point RCT Size: 90	Major Inclusion criteria:) ≥18 years of age; proven occlusion in anterior cerebral circulation by CT angiography; NIHSS ≥10 (iright-sided occlusion) or ≥14 (left-sided occlusion; treatment initiated within 8 hours after onset of symptoms. Major Exclusion criteria: anesthesiologica I concerns (airway, agitation, etc) at the discretion of	Intervention: General anesthesia (GA) by propofol and remifentanil, maintained with sevoflurane and remifentanil, (n=45) Comparator: Conscious sedation (CS) by remifentanil infusion (n=45)	1° end point: mRS 0-2 at 3 months: GA: 19/45 (42.2%) CS: 18/45 (40.0%) (<i>P</i> =1.00) Safety end point: • Symptomatic ICH 22-36 hrs: GA: 0/45 (0%) CS: 3/45 (7%) <i>P</i> =0.24	mTICI 2b–3 GA: 41/45 (91%0 CS: 40/45(89%) <i>P</i> =1.00	 single-center study size of the study limited superiority design not designed to establish noninferiority 	 In this small, single center study no statistically significant difference was found between GA and CS in neurological outcome 3 months after stroke or in mTICI 2b/3 recanalization.

Table XLII. Randomized Clinical Trials Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy

SIESTA Schonenberger S, et al. ¹⁸² 2016 27785516	Aim: To assess whether conscious sedation is superior to general anesthesia for early neurological improvement among patients receiving acute ischemic stroke thrombectomy Study type: RCT Size: N=150	the attending anesthetist;) premorbidity mRS ≥4 or other comorbidity contraindicating embolectomy. Inclusion criteria: NIHSS>10, IC ICA, M1, <9 h Exclusion criteria: Aspiration risk, severe agitation, difficult airway access, and many more	Intervention: GA during procedure (n=73) Comparator: Conscious sedation during procedure (n=77)	1° end point: NIHSS improvement after 24 h: - 3.2 NIHSS points GA group, -3.6 NIHSS points conscious sedation group; mean difference 0.4 points (95% CI, -3.4 to 2.7; <i>P</i> =0.82) Safety end point: • Death 24.7% vs. 24.7% • Vessel perforation/SAH 1.4% vs. 2.6% (<i>P</i> =0.59)	 TICI 2b/3: 89% GA vs. 80% conscious sedation group (not clinically meaningful) No clinically meaningful differences in mRS or mortality at 3 mo between groups No clinically meaningful differences in process time points or duration of endovascular therapy 	Single center; experienced with general anesthesia pre- trial initiation, small sample size, early primary end point assessment (24 h)	Trial findings do not support an advantage for conscious sedation over GA in acute endovascular ischemic stroke intervention
---	---	--	---	---	--	--	--

Abbreviations: CI indicates confidence interval; ICA, internal carotid artery; GA, general anesthesia; NIHSS, National Institutes of Health Stroke Score; RCT, randomized clinical trial; SAH, subarachnoid hemorrhage; and TICI, thrombolysis in cerebral infarction. Literature search topics: Endovascular interventions

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Berkhemer OA, et al. ¹⁸⁰ 2016 <u>27421546</u>	Study type: Post hoc analysis of MR CLEAN Size: GA N=79, CS N=137, control N=267	Inclusion criteria: Post hoc analysis comparing the clinical and angiographic outcomes of GA vs. CS for all patients allocated to ET in MR CLEAN Exclusion criteria: Inability to undergo ET (1 patient)	 1° end point: 90 d mRS 0–2 Results: GA with 51% lower chance of mRS 0–2 (95% CI: 31%–86%), absolute risk difference 19% for mRS 0–2 in favor of CS group compared to control (adjusted OR, 2.96; 95% CI, 1.78–4.92) Greater infarct growth in GA group. Door to groin time 32 min longer in GA group (<i>P</i>=0.001) Similar safety outcomes and procedural duration between GA and CS 	 Conversion to GA occurred in 4.4% No data on type of anesthesia collected in MR CLEAN Limited details about procedural BP changes Results challenge routine use of GA
Brinjkji W, et al. ³⁹⁴ 2015 <u>25395655</u>	Study type: Systematic review and meta-analysis Size: N=1956	Inclusion criteria: Systematic review and meta-analysis comparing the clinical and angiographic outcomes of GA vs. CS Exclusion criteria: Case reports, non- comparative studies, studies that failed to separate outcome by anesthesia type, and others	1° end point: 90 d mRS 0–2 Results: GA with lower odds of mRS 0–2 (OR, 0.43; 95% CI, 0.35–0.53) and TICI 2b/3 (OR, 0.54; 95% CI, 0.37–0.80); higher odds of death (OR, 2.59; 95% CI; 1.87–3.58) and respiratory complications (OR, 2.09; 95% CI; 1.36–3.23).	 No included studies were randomized trials Higher rates of both recanalization and good functional outcomes for patients treated with conscious sedation Decreased rates of mortality and respiratory complications for patients treated with conscious sedation Similar procedural time-points between groups

Table XLIII. Nonrandomized Trials, Observational Studies, and/or Registries Comparing General Anesthesia to Conscious Sedation for Endovascular Stroke Therapy

 Abbreviations: Cl indicates confidence interval; CS, conscious sedation; ET, endovascular therapy; GA, general anesthesia; mRS, modified Rankin Scale; OR, odds ratio; and TICI, thrombolysis in cerebral infarction.

Literature search topic: Endovascular interventions

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Li W, et al. ³⁹⁵ 2016 <u>27608821</u>	Study type: Single- arm, open label, propensity matched	Inclusion criteria: IV alteplase + tirofiban infusion	1° end point: 90 d mRS (favorable 0–1) Results: 70.7% vs. 46.2% (<i>P</i> =0.026)	Interpretation limited by generalizability; warrants a prospective randomized trial
	Size: N=41	Exclusion criteria: alteplase exclusions		
Wada T, et al. ³⁹⁶ 2016 <u>27567296</u>	Study type: Retrospective, observational, propensity matched	Inclusion criteria: AIS in Japan treated with ozagrel (subtyped LAA, SVD)	 1° end point: mRS at discharge Results: LAA, OR, 0.99 (0.88–1.11); SVD, OR, 1.99 (0.87–1.16) sICH no difference 	Limited by generalizability; warrants further study in a prospective randomized trial
	Size: N=2726 (LAA), N=1612 (SVD)	Exclusion criteria: Age<40 y, atrial fibrillation or other indication for AC		
CLEAR-ER Adeoye O, et al. ¹⁸⁹ 2015 <u>25523054</u>	Study type: Post hoc, propensity matched analysis of data from 3 prior trials	Inclusion criteria: 0.6 mg/kg IV alteplase <3 h, + eptifibatide infusion Exclusion criteria:	 1° end point: Severity-adjusted mRS at 90 d (favorable outcome mRS 0–2) Results: 45% vs. 36% unadjusted RR, 1.24 (0.91–1.69) 	0.6 mg/kg IV alteplase + eptifibatide in AIS warrants a prospective randomized trial
	Size: 85 vs. 169 matched controls (IMS III, ALIAS Part 2)	alteplase exclusions		
CLEAR-FDR Adeoye O, et al. ¹⁹⁰ 2015 26243231	Study type: Single- arm, open-level, multicenter Size: N=27	Inclusion criteria: Full dose IV alteplase <3 h, + eptifibatide infusion	1° end point: sICH within 36 h Results: 3.7% sICH	Full dose IV alteplase + eptifibatide appears safe and warrants a prospective randomized trial
		Exclusion criteria: alteplase exclusions	aka. CL confidence interval: IV/ introvensus: LAA Jarga arter.	

Abbreviations: AC indicates anticoagulation; AIS, acute ischemic stroke; CI, confidence interval; IV, intravenous; LAA, large-artery atherosclerosis; OR, odds ratio; RR, relative risk; sICH, symptomatic intracerebral hemorrhage; and SVD, small vessel disease. Literature search topic: Antiplatelet

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SOCRATES Johnston SC and Amarenco P ¹⁹⁶ 2016 27705253	Aim: To determine the efficacy of ticagrelor vs. ASA in minor stroke or high-risk TIA Study Type: Randomized, double- blind, placebo-controlled trial Size: N=13,199 (674 centers, 33 countries)	Inclusion criteria: Acute minor stroke (NIHSS≤5) or TIA (ABCD2≥4), age>40, ability to start study drug within 24 h onset Exclusion criteria: Clear indication or contraindication for specific antiplatelet therapy; thrombolytic or EVT; numerous others	Intervention: Ticagrelor (180 mg day 1, 90 mg BID × 90 d) + placebo (n= 6589) Comparator: ASA (300 mg day 1, 100 mg daily × 90 d) + placebo (n=6610)	1° end point: Time to composite stroke, MI, or death up to 90 d: ticagrelor 442 (6.7%) vs. ASA 497 (7.5%); HR, 0.89 (0.78–1.01); <i>P</i> =0.07 Safety end point : Time to first bleeding event up to 90 d: no difference	 Ischemic stroke: 385 (5.8) vs. 441 (6.7), HR, 0.87 (0.76– 1.00); P=0.046 All stroke: 390 (5.9) vs. 450 (6.8) HR, 0.86 (0.75–0.99); P=0.03; p- values considered non- significant 	 Low enrollment of high-risk patients (e.g., symptomatic carotid) Low event rates in TIA group More patients had premature discontinuation in the ticagrelor group due to adverse events (e.g., dyspnea) 	Ticagrelor not recommended
Ciccone A, et al. ¹⁹¹ 2014 <u>24609741</u>	Aim: To assess safety and efficacy of glycoprotein GP IIb-IIIa inhibitors in AIS Study Type: Cochrane review Size: N=1365 (4 trials)	Inclusion criteria: Randomized, unconfounded trials, started treatment within 6 h of stroke onset Exclusion criteria: Nonrandomized, risk of bias at	Intervention: IV GP IIb-IIIa inhibitor (abciximab, tirofiban) either alone or in combination with IV thrombolytic agents (n=685) Comparator: (n=680)	1° end point: Death or dependency at follow-up: abciximab vs. placebo: OR: 0.97 (0.77–1.22); tirofiban vs. ASA: OR, 1.00 (0.52–1.92) Safety end point: sICH: abciximab vs. placebo, OR, 4.6 (95% CI, 2.01– 10.54); tirofiban vs. ASA, OR, 0.32 (95% CI, 0.03–3.19)	Non-significant difference in risk of extracranial hemorrhage: abciximab (OR, 1.81; 95% CI: 0.96–3.41); tirofiban (OR, 3.04, 95% CI, 0.12–75.83)	 Abciximab contributed 89% of the total study participants considered Heterogeneity between trials Only 2 new trials (abESTT-II and SETIS) included since 2006 review 	Supports current LOE

Table XLV. Randomized Clinical Trials Comparing Antiplatelet to Control

Sandercock PA, et al. ¹⁸⁶ 2014 <u>24668137</u> CHANCE	Aim: To assess the safety and efficacy of oral antiplatelet therapy in AIS started within 14 d from onset Study Type: Cochrane review Size: N=41,483 (8 trials)	discretion of reviewers Inclusion criteria: Randomized, unconfounded trials of oral antiplatelet therapy in AIS started within 14 d from onset Exclusion criteria: Nonrandomized, treatment allocation not concealed from enrolling investigator	Intervention: Antiplatelet therapy (4 studies tested ASA, 3 tested ticlopidine, and 1 tested ASA / dipyridamole); *2 trials (IST, CAST) testing ASA 160–300 mg daily, started within 48 h, contributed 98% of the data (n=20,647) Comparator: (n=20,644)	1° end point: Death or dependency at follow-up: ASA vs. control, OR, 0.95 (0.91–0.99); <i>P</i> =0.01 Safety end point: sICH: ASA vs. control, OR: 1.23 (1.00–1.50), <i>P</i> =0.04	Significant reduction in recurrent ischemic stroke, PE	 Excluded CLEAR trials (2008, 2013) due to lower dose of IV alteplase in the intervention group compared to control 98% of data contributed by 2 trials published in 1997 (IST, CAST) No new trials included since 2008 Trial data limited primarily to conclusions about ASA Excluded IV antiplatelet agents 	Supports current LOE
CHANCE Wang Y, et al. ¹⁹³ 2013 <u>23803136</u>	Aim: To determine the efficacy of ASA/clopidogrel vs. ASA alone in patients with minor stroke or high-risk TIA Study Type: Randomized, double- blind, placebo-controlled trial	Inclusion criteria: Acute minor stroke (NIHSS ≤3) or TIA (ABCD2 ≥4), age>40, ability to start study drug within 24 h onset	Intervention: Open label ASA (75–300 mg day 1, 75 mg day 2– 21) + clopidogrel (300 mg day 1, 75 mg daily day 2–90) (n=2584) Comparator: Open label ASA (75–300 mg day	1° end point: New stroke (ischemic or hemorrhagic at 90 d): ASA/clopidogrel 212 (8.2%) vs. ASA/placebo 303 (11%), HR, 0.68 (0.57–0.81); <i>P</i> <0.001 Safety end point: Moderate to severe	 Stroke, MI, vascular death: 216 (8.4%) vs. 307 (11.9%), HR, 0.69 (0.58–0.82); P<0.001 Ischemic stroke 204 (7.9%) vs. 295 (11.4%), HR, 0.67 (0.56–0.81); P<0.001 	 Stratified randomization by site and time of randomization Intervention group received placebo ASA d 21–90 Questionable external validity in non-Asian populations and 	Adds to current LOE; awaiting definitive RCT (POINT)

	Size: N=5170 (114 centers in China)	Exclusion criteria: Isolated sensory, visual symptoms, dizziness without evidence of infarct on MRI, a clear indication for AC, history of GIB or surgery within previous 3 mo, numerous other exclusions	1, 75 mg day 2– 90 + placebo (n=2586)	bleeding event: no difference	No difference in hemorrhagic stroke	outside of Chinese healthcare system: POINT trial ongoing in the US	
CHANCE-1 YEAR Wang Y, et al. ¹⁹⁴ 2015 25957224	Aim: To determine the efficacy of ASA/clopidogrel vs. ASA alone in patients with minor stroke or high-risk TIA Study Type: Randomized, double- blind, placebo-controlled trial Size: N=5170 (114 centers in China)	Inclusion criteria: Acute minor stroke (NIHSS ≤3) or TIA (ABCD2 ≥4), age>40, ability to start study drug within 24 h onset Exclusion criteria: Isolated sensory, visual symptoms, dizziness without evidence of infarct on MRI, a clear indication for AC, history of GIB or surgery within previous 3 mo, numerous other exclusions	Intervention: Open label ASA (75–300 mg day 1, 75 mg day 2– 21) + clopidogrel (300 mg day 1, 75 mg daily day 2–90) (n=2584) Comparator: Open label ASA (75–300 mg day 1, 75 mg day 2– 90 + placebo (n=2586)	1° end point: New stroke (ischemic or hemorrhagic 1° end point at 1 year ASA/clopidogrel 275 (10.6%) vs. ASA/placebo 362 (14.0%), HR, 0.78 (0.65–0.93); <i>P</i> <0.001 Safety end point: Moderate to severe bleeding event: no difference	 Stroke, MI, vascular death at 1 yr: 282 (10.9%) vs. 370 (14.3%), HR, 0.78 (0.65–0.93); P=0.005 Ischemic stroke at 1 yr: 263 (10.2%) vs. 349 (13.5%), HR, 0.77 (0.64–0.93); P=0.006 No difference in hemorrhagic stroke 	 Stratified randomization by site and time of randomization Intervention group received placebo ASA d 21–90 Questionable external validity in non-Asian populations and outside of Chinese healthcare system: POINT trial ongoing in the US 	The early benefit of clopidogrel- aspirin treatment in reducing the risk of subsequent stroke persisted for the duration of 1- year of follow- up. Adds to current LOE; awaiting definitive RCT (POINT)

Abbreviations: AC indicates anticoagulation; ASA, acetylsalicylic acid; BID, twice a day; CI, confidence interval; EVT, endovascular therapy; GIB, gastrointestinal bleeding; HR, hazard ratio; IV, intravenous; LOE, level of evidence; MI, myocardial infarction; MRI, magnetic resonance imaging; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PE, pulmonary embolus; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; sx, symptoms; and TIA, transient ischemic attack. **Literature search topic**: Antiplatelet

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ARTSS-2 Barreto AD, et al. ²⁰⁶ 2017 <u>28507269</u>	Aim: To assess safety of argatroban as adjunct therapy in patients with AIS treated with alteplase Study Type: Randomized controlled trial Size: N=90	Inclusion criteria: AIS patients receiving IV alteplase within 4.5 h, age≥18 y, NIHSS≥10 or proximal LVO Exclusion criteria: • Planned EVT • Full listing in data supplement	Intervention: Argatroban (100 µg/kg bolus) followed by infusion of either 1 (low dose) (N=30) or 3 µg/kg per min (high dose) (n=31) for 48 h Comparator: No argatroban (n=29)	1° end point Probability of a clinical benefit (mRS 0–1 at 90 d) RR>1.0: • Low dose: 1.17 (0.57– 2.37), 0.67 • High dose: 1.27 (0.63– 2.53), 0.74 • Low + high dose: 1.34 (0.68–2.76), 0.79 Safety end point: Incidence of sICH: • Control: 3/29 (10%) • Low-dose: 4/30 (13%) • High-dose: 2/31 (7%) Probability RR>1.0: • Low dose: 1.55 (1.07–2.25), 0.99 • High dose: 1.73 (1.04– 2.89), 0.98	Recanalization at 2–3 h, neurological improvement by NIHSS, QOL at 90 d: no clinically meaningful differences	 No formal sample size estimation Study not powered to determine differences in end points Open label design 	Supports the safety of adjunctive argatroban + IV alteplase at the doses assessed to proceed with a Phase III efficacy trial
Sandercock PA, et al. ¹⁹⁸ 2015 <u>25764172</u>	Aim: To assess the efficacy and safety of early AC in first 14 d from AIS	Inclusion criteria: Randomized trials of early AC started within 14	Intervention: UFH, LMWH, oral AC, thrombin	1° end point : Death or disability at the end of follow-up (8 trials, n=22,125): OR, 0.99 (95% Cl, 0.93–1.04)	• Recurrent IS: OR, 0.76 (95% CI, 0.65–0.88)	Heterogeneity (intervention, stroke populations,	Supports current LOE

Table XLVI. Randomized Clinical Trials Comparing Anticoagulant to Control

	Study Type: Cochrane review of randomized trials Size: N=23,748	d from onset of acute ischemic stroke (>90% trials AC started in first 48 h) Exclusion criteria: Non- randomization, no control group, confounded studies	inhibitors (n=11,613) Comparator: Control (n=11,613)	Safety end point : sICH: OR, 2.55 (95% CI, 1.95– 3.33)	 PE: OR, 0.60 (95% CI, 0.44– 0.81) Extracranial hemorrhage: OR, 2.99 (95% CI, 2.24–3.99) 	intervention, follow-up) • No additional studies included since 2008 review	
Yi X, et al. ¹⁹⁹ 2014 <u>24656240</u>	Aim: To investigate the efficacy of LMWH compared to aspirin in preventing END in acute stroke patients Study Type: Unblinded RCT Size: N=1368 (2 Chinese hospitals)	Inclusion criteria: Age 18–85 y; diagnosis of ischemic stroke as defined by CT and MRI; LAA or SVD by TOAST criteria; symptoms of stroke <48 h before receiving the first dose of trial medication; presence of motor deficit as a result of acute stroke Exclusion criteria: • NIHSS score >15 • History of ICH; known	Intervention: Enoxaparin (40 mg, 4000 IU) started <48 h onset and continued for 10 d (n=683) Comparator: ASA (200 mg) started <48 h onset and continued for 10 d (n=685)	1° end point: END (≥4 pts on NIHSS) at 10 d after admission: END: LMWH, 27 (3.95%) vs. ASA, 81 (11.82%), P<0.001 Safety end point: Time to first bleeding event up to 90 d: no difference	 Early recurrent ischemic stroke, VTE, or myocardial infarction at 10 d after admission; 6 mo mRS (good outcome 0–2) DVT: LMWH 10 (1.46%) vs. 29 (4.23%), P=0.003 ERIS, MI: no difference 6 mo mRS 0– 2: LMWH 64.2% vs. ASA 6.52% P=0.33 Symptomatic basilar artery - LMWH 41 (82.00%) vs. ASA 25 	 Unblinded Excluded cardioembolic etiologies Questionable generalizability 	Does not add to current LOE

		contraindication for the use of			(48.08%), <i>P</i> =0.001		
		LMWH or aspirin					
		Patient on					
		anticoagulation					
		therapy before					
		the onset of stroke:					
		sustained					
		hypertension					
		(BP >200/110					
		mmHg)					
		immediately					
		before					
		randomization					
		 Coexisting 					
		terminal disease					
		or dementia,					
		atrial fibrillation					
		on ECG, chronic					
		rheumatic heart					
		disease, or					
		metallic heart					
		valve					
		• Thrombo-					
	Aim. To investigate	cytopenia	Intervention:	40 and a sint. Oama site	Deeder	Desults driver	Currente europet
Whiteley WN, et al. ¹⁹⁷	Aim: To investigate targeted heparinoids in	Inclusion criteria:	UFH.	1° end point: Composite of thrombotic events within	Dead or	Results driven	Supports current
2013	AIS for patients at high	Individual	heparinoid,	14 d (any fatal or non-fatal	dependent at 3– 6 mo (trial	by IST (83% of outcomes,	
23642343	risk of DVT and/or lower	patient data	LMWH (n=N/A)	pulmonary embolism,	defined);	source of	
	risk for hemorrhagic	from 5		deep vein thrombosis,	predictive	derivation set for	
	events	randomized	Comparator:	myocardial infarction, or	modeling to	predictive	
		control trials:	ASA/placebo	recurrent ischemic stroke	define	modeling)	
	Study Type: Meta-	IST, TOAST,	(n=N/A)	[not stroke extension	parameters that	Models only	
	analysis of randomized	FISS-tris,		alone): heparin vs. control	might help target	modestly	
	trials	HAEST, TAIST		ARR: 1.4%	heparin regimen	predictive for	
					for specific	thrombotic and	
	Size: N=22,655	Exclusion		Safety end point:	patient groups	hemorrhagic	
		criteria: n<100,		Composite of hemorrhagic	(e.g., age,	events	
		non-		events within 14 d (any	presence of		

		randomized, data not available (excluded 22 trials		recorded fatal or non-fatal intracranial hemorrhage, or extracranial hemorrhages that led to death, transfusion, or surgery: control vs. heparin ARR: 1.6%	atrial fibrillation, NIHSS) • No group showed benefit of heparins over aspirin or placebo for the prevention of death or disability at the time of last follow-up	 Generaliz- ability limited to stroke subtypes predominant in the included trials Heterogeneity between trials Trials identified from Cochrane review³⁹⁷ 	
FISS-tris Study Wang Q, et al. ³⁹⁸ 2012 <u>22893265</u> Wang QS, et al. ³⁹⁹ 2012 <u>22076004</u>	Aim: To investigate the efficacy of LMWH vs. ASA in patients with LAOD subgroups Study Type: Unblinded RCT Size: N=353 (11 hospitals Hong Kong, Singapore)	Inclusion criteria: Age 18–90 y; diagnosis of ischemic stroke and vascular imaging to confirm LAOD (intracranial and extracranial) Exclusion criteria: Patients with pre-existing disability (defined as prestroke mRS 1) and severe stroke (defined as a NIHSS 22)	Intervention: Nadroparin (3800 IU) started <48 h onset and continued for 10 d (n=180) Comparator: ASA (160 mg) started <48 h onset and continued for 10 d (n=173)	 1° end point: END at 10 d defined by progressive stroke, ERIS, sICH "Progressive stroke" was defined as stroke events of END without evidence of ERIS or sICH: dichotomized Barthel Index 6 mo (good >85) END (progressive stroke) - LMWH better than ASA: (5.0% [9 of 180] vs. 12.7% [22 of 173]; OR, 0.36 [95% CI, 0.16–0.81]); no difference in ERIS or sICH 6 mo Barthel Index: >68 y (<i>P</i>=0.043; OR, 1.86 [95% CI, 1.02–3.41]); without ongoing antiplatelet treatment on admission (<i>P</i>=0.029; OR, 1.85 [95% CI, 1.06–3.21]), and with symptomatic posterior circulation arterial disease (<i>P</i>=0.001; OR, 5.76 [95% CI, 2.00–16.56]) 	 mRS 0–2 at 6 mo LMWH better than ASA: >68, no antiplatelet on admission All other subgroups no difference 	 "Progressive stroke" poorly defined Different primary outcomes compared to main FISS-tris trial Exploratory subgroup analysis Questionable generalizability 	Does not add to current LOE

Abbreviations: AC indicates anticoagulation; AIS, acute ischemic stroke; ARR, absolute risk reduction; ASA, acetylsalicylic acid; BP, blood pressure; CI, confidence interval; CT, computed tomography; DVT, deep vein thrombosis; ECG; electrocardiogram; END, early neurologic deterioration; ERIS, early recurrence of ischemic stroke; EVT, endovascular therapy; h, hours; IU, international units; IV, intravenous; LAA, large-artery atherosclerosis; LAOD, large artery occlusive disease; LMWH, low-molecular-weight heparin; LOE, level of evidence; LVO, large vessel occlusion; MI, myocardial infarction; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PE, pulmonary embolus; QOL, quality of life; RCT, randomized clinical trial; RR, relative risk; sICH, symptomatic intracerebral hemorrhage; SVD, small vessel disease; UFH, unfractionated heparin; VTE, venous thromboembolism, and y, years.

Literature search topic: Anticoagulation

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Wada T, et al. ²⁰⁰ 2016 <u>26670085</u>	Study type: Retrospective, observational Size: N=2289	Inclusion criteria: AIS in Japanese hospitals treated with argatroban Exclusion criteria: • Age<40 y • Pregnancy • Pre-preexisting comorbidities of malignancy coagulopathy, preexisting atrial fibrillation • Receipt of oral anticoagulants including warfarin and dabigatran during hospitalization • Liver failure • IV antihypertensive therapy or heparin on admission • Alteplase or endovascular	1° end point: mRS at discharge (propensity matched) Results: • OR, 1.01 (0.88–1.16) • ICH 3.5% vs. 3.8%	Interpretation limited by generalizability and selection bias

	Stude to a Constant	therapy during hospitalization		
Kate M, et al. ²⁰¹ 2015 <u>26304866</u>	Study type: Open- label, single-arm safety trial of dabigatran in AIS Size: N=53	Inclusion criteria: TIA or stroke NIHSS≤3; dabigatran started <24 h LKW and continued for 30 d Exclusion criteria: GFR<30, alteplase or EVT, clear indication for AC	1° end point: sICH Results: 0% sICH	Dabigatran appears safe in AIS with minor stroke or TIA and provides preliminary data for a larger randomized trial
RAF Study Paciaroni M, et al. ²⁰² 2015 <u>26130094</u>	Study type: Prospective cohort Size: N=1029 (multicenter Europe and Asia)	Inclusion criteria: Known or newly diagnosed atrial fibrillation Exclusion criteria: Contraindication to AC	 1° end point: Composite stroke, TIA, systemic embolism, sICH, major extracranial bleeding within 90 d Results: 12.6% primary outcome HR, 0.53 (0.30–0.93) starting AC 4–14 d compared to <4 d 	 Initiating AC 4–14 d from stroke onset in patients with atrial fibrillation had better outcomes High CHA₂DS₂-VASc, NIHSS, large ischemic lesions, and type of AC associated with composite outcome Study limited by non- randomization
Mokin M, et al. ²⁰³ 2013 <u>22345142</u>	Study type: Retrospective, observational Size: N=18	Inclusion criteria: Non-occlusive intraluminal thrombus of intracranial and extracranial arteries confirmed by CTA, treated with IV heparin Exclusion criteria: alteplase or EVT	 1° end point: Follow-up recanalization (range treatment 1–8 d) Results: 9 pts complete, 9 pts partial No ICH 	Numbers too small to draw any meaningful conclusions; short duration of treatment and follow-up
Vellimana AK, et al. ²⁰⁴ 2013 <u>23061393</u>	Study type: Retrospective, observational Size: N=24	Inclusion criteria: TIA or stroke, intraluminal thrombus CCA, ICA treated with AC	1° end point: Recurrent ischemic events; TIA Results: No recurrent ischemic events; one TIA (mean follow-up 16.4 mo	Numbers too small to draw any meaningful conclusions; 10 patients underwent delayed revascularization

		Exclusion criteria: Intracranial thrombus, trauma/dissection, ipsilateral CAS, ICH		
ARTSS-1 Barreto AD, et al. ²⁰⁵ 2012 <u>22223235</u>	Study type: Open- label, pilot safety study of argatroban infusion + IV alteplase Size: N=65	Inclusion criteria: Age 18–65 y, <3 to 4.5 h LKW, complete or partially occlusive thrombus on TCD, eligible for IV alteplase	 1° end point: sICH or PH-2 Results: 6.2% sICH TCD recanalization 61% 	Argatroban infusion + IV alteplase potentially safe and feasible for Phase III trial
		Exclusion criteria: NIHSS >17 right MCA, >22 left MCA		

Abbreviations: AC indicates anticoagulation; CAS, carotid artery stenting; CI, confidence interval; CCA, common carotid artery; CTA, computed tomography angiography; EVT, endovascular therapy; HR, hazard ratio; ICA, internal carotid artery; IV, intravenous; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; LKW, last known well; sICH, symptomatic intracerebral hemorrhage; MCA, middle cerebral artery; PH-2, parenchymal hematoma type 2; TIA, transient ischemic attack; and TCD, transcranial Doppler. Literature search topic: Anticoagulation

Table XLVIII. Randomized Clinical Trials Comparing Other Treatments for Acute Ischemic Stroke

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2º End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ALIAS Martin RH, et al. ²¹⁰ 2016 (Parts I & II combined data) <u>27462118</u> Ginsberg MD, et al. ²⁰⁹ 2013 (Part II) <u>24076337</u>	Aim: To determine the safety and efficacy of albumin infusion in AIS Study Type: Randomized, double- blinded, placebo- controlled trial Size: N=1275 combined (NETT)	*Combined dataset from ALIAS Parts I & Il trials Inclusion criteria: AIS, age 18–83 y, NIHSS>6, initiation of infusion within 5 h LKW and	Intervention: 25% albumin infusion (2 g/kg) (n=637) Comparator: Saline placebo (1:1) (n=638)	 1° end point: 90 d disability (proportion of favorable outcomes defined by mRS 0–1, NIHSS 0–1, or both): Combined: proportion of good outcomes identical (41%) between groups Part II: RR, 0.96 (0.84– 1.10) 	Secondary efficacy, death (30 & 90 d), ICH within 24 h: no differences between groups	Part I stopped early for safety; Part II stopped early for futility; saline group in Part II did better than expected, stratified randomization by thrombolysis; differences in alteplase rates	High-dose albumin is not recommended

		within 90 min of alteplase (if treated) Exclusion criteria: CHF or other cardiac/systemic conditions exacerbated by volume expansion; numerous other exclusions listed ²⁰⁹		Safety end point: CHF, pulmonary edema within 48 h: CHF within 48 h: RR, 7.76 (3.87–15.57) (combined)		and age between Parts I & II	
FAST-MAG, Saver JL, et al. ⁴⁰⁰ 2015 <u>25651247</u>	Aim: To determine the efficacy of magnesium infusion, initiated early, on stroke outcomes Study Type: Randomized, double- blind, placebo-controlled trial Size: N=1700 (multiple CA sites)	Inclusion criteria: Age 40–95 y, + LAPSS, treatment initiation within 2 h LKW, deficit >15 min Exclusion criteria: Patient unable to provide informed consent or enrollment under EFIC; otherwise standard exclusions (NEJM appendix)	Intervention: Magnesium sulfate 4 g bolus + 16 g infusion × 24 h (n=857) Comparator: Placebo (n=843)	1° end point: 90 d disability (shift in mRS): no significant shift (<i>P</i> =0.28) Safety end point : 90 d: Mortality (<i>P</i> =0.95); sICH (<i>P</i> =0.12), SAEs (<i>P</i> =0.67)	 NIHSS, Barthel Index, GOS: no differences SAEs, sICH, death: no differences 	 Long enrollment period Higher ICH rate than predicted (22%) 4% mimic rate 33%–38% alteplase treatment rate in eligible patients 	Magnesium infusion is not recommended

Chang TS and	Aim: To assess the	Inclusion	Intervention:	1° end point: Death or	 Early and late 	• Heterogeneity,	Hemodilution is
Jensen MB ²⁰⁸	effects of hemodilution in	criteria:	Plasma volume	dependency at 3-6 mo:	mortality,	isovolemic vs.	not
2014	AIS	Randomized	expansion vs	risk ratio: 0.96 (95% CI,	venous	hypervolemic	recommended
<u>25159027</u>		trials of	(plasma, dextran	0.85–1.07)	thromboembolic	intervention	
	Study Type: Cochrane	hemodilution	40, HES,	,	events, serious	 Risk of bias 	
	review	treatment in AIS,	albumin, ±	Safety end point: Serious	cardiac events,	 Treatment 	
		treatment	venesection)	cardiac events: Overview	anaphylactoid	effect (reduced	
	Size: N=4174 (21 trials)	started w/in 72 h	,	analysis	reactions: no	HCT) delayed	
	, , ,		Comparator:	(OR, 0.99; 95% CI, 0.66-	significant	>6 h in most	
		Exclusion	Control	1.50)	differences in	participants	
		criteria: No			secondary	Small	
		details of			outcomes	numbers to	
		intervention,			Cardiac	assess some	
		incomplete			events at 3–6	interventions	
		outcomes data,			mo, OR, 0.99		
		no control			(0.66–1.50)	(e.g., HES)	
		group, lack of			(0.00 1.00)		
		randomization					

Abbreviations: ADL indicates activities of daily living; AIS, acute ischemic stroke; ATA, arterial transit artifact; CHF, chronic heart failure; CI, confidence interval; CT, computed tomography; EVT, endovascular therapy; g, gram; GOS, Glasgow Outcome Scale; h, hours; HCT, hematocrit; HES, hydroxyethyl starch; ICH, intracranial hemorrhage; LAPSS, Los Angeles Prehospital Stroke Screen; LKW, last known well; MRI, magnetic resonance imaging; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; OTT, onset to treatment; RCT, randomized clinical trial; RR, relative risk; SAE, serious adverse event; sICH, symptomatic intracranial hemorrhage; TLT, transcranial laser therapy; and y, years.

Literature search topic: Neuroprotection

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
NEST-3 Hacke W, et al. ⁴⁰¹ 2014 <u>25293665</u>	Aim: To investigate benefit of TLT for acute ischemic stroke Study type: Prospective randomized clinical trial Size: N=1000	Inclusion criteria: Ischemic stroke within 24 h, NIHSS 7–17, ≤80 y Exclusion criteria: IV alteplase	Intervention: Transcranial laser therapy (TLT) between 4.5–24 h of stroke onset (n=288) Comparator: Sham TLT (n=288)	1° end point: Disability 90 d mRS (success 0–2, failure 3–6) Safety end point: N/A	N/A	Potential non- standardization of TLT between animal models and human trials (not taking skull thickness into account)	 Terminated due to futility; analysis after 566 subjects No benefit of NILT over sham procedure Terminated after inclusion of 2/3 of planned patient number

Table XLIX. Randomized Clinical Trials Comparing Transcranial Laser Therapy for Stroke

Abbreviations: h indicates hours; IV, intravenous; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NILT, near infrared laser therapy; OR, odds ratio; TLT, transcranial laser therapy; y, year. **Literature search topic:** Transcranial laser therapy AND transcranial near-infrared laser therapy

Table L. Randomized Clinical Trials Comparing Early Versus Delayed Initiation of Treatment for Blood Pressure Reduction in Patients with	
Acute Ischemic Stroke	

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
ENOS ENOS Trial Investigators ²²⁸ 2015 <u>25465108</u>	Aim: To assess the efficacy and safety of BP reduction with transdermal glyceryl nitrate within 48 h of an acute stroke	Inclusion criteria: • Acute ischemic stroke (or ICH) within previous 48 h	Intervention: Transdermal glyceryl nitrate 5 mg/d for 7 d (n=2000)	1° end point: mRS distribution at 90 d: OR for worse outcome: 1.01 (95% CI, 0.91–1.13; <i>P</i> =0.83) for the active arm	• 90-d Barthel Index, mini- mental state score, HRQOL, and depression	• Subset of patients previously on antihypertensive s were also randomized to	• Early treatment of hypertension with transdermal glyceryl nitrate was safe but

	Study type: RCT Size: N=4011	 SBP 140–220 mmHg Exclusion criteria: Coma Minor stroke Hypertensive emergency SBP>220 mmHg Premorbid disability 	Comparator: Placebo (n=2011)	Safety end points: All cause-mortality, early neurological decline, recurrent stroke within 7 d, symptomatic hypotension, and serious systemic events: <i>P</i> >0.1 for all comparisons	score: P>0.1 for all comparisons • Post-hoc subgroup analysis (Woodhouse et al. 2015) of patients started on treatment within 6 h of stroke onset (N=273) showed benefit (improved mRS at 90 d on ordinal shift analysis) from the intervention: common OR: 0.51 (95% CI: 0.32–0.80)	continue (n=1053) or stop (n=1044) those drugs: there were no differences in the comparison of those two groups either (OR, 1.05; 95% CI, 0.90–1.22; <i>P</i> =0.55) • Results were similar when the analysis was restricted to patients with ischemic stroke	ineffective to prevent death or dependency • Early reinitiation of antihypertensive s was ineffective to prevent death or dependency • Treatment within 6 h was safe and may be beneficial to improve functional outcomes
Lee M, et al. ²²⁹ 2015 <u>26022636</u>	Aim: Assess the effect of BP reduction within 72 h of an acute ischemic stroke on functional outcomes at 3 mo Study type: Meta- analysis of RCTs Size: N=12,703 (13 trials)	Inclusion criteria: As per individual trials; only including acute ischemic stroke Exclusion criteria: As per individual trials	Intervention: Treatment started for BP reduction within the first 72 h (n=6392) Comparator: No new treatment started for BP reduction within the first 72 h (n=6311)	1° end point: Death or dependency (mRS 3–6) at 90 d: RR, 1.04 (95% CI, 0.96–1.13; <i>P</i> =0.35) Safety end point: Serious adverse events (as per each trial definition): <i>P</i> >0.05 for all comparisons	Recurrent vascular events, all-cause mortality, disability, recurrent stroke: <i>P</i> >0.05 for all comparisons	Heterogeneity across trials	Early BP reduction was safe but ineffective to prevent death or dependency
VENTURE Oh M, et al. ²²⁷ 2015 <u>25580869</u>	Aim: To assess the efficacy and safety of modest blood pressure reduction with valsartan within 48 h after symptom	Inclusion criteria: • Acute ischemic stroke	Intervention: Oral valsartan 80 mg/d for 7 d (n=195)	1° end point: Death or major disability (mRS 3–6) at 90 d: OR, 1.11; 95% CI, 0.69–1.79; <i>P</i> =0.667	Major vascular events within 90 d: OR, 1.41; 95% CI, 0.44– 4.49; <i>P</i> =0.771	Early termination due to futility determined on interim analysis	Early reduction of BP with valsartan did not reduce death or dependency and

	onset in patients with acute ischemic stroke and high BP Study type: RCT Size: N=393	within previous 48 h • SBP 150–185 mmHg Exclusion criteria: • Impaired level of consciousness • NIHSS ≥22 • Pre-existent disability • Coexistent vascular emergency • Severe comorbidities	Comparator: Placebo (n=198)	Safety end point: Early neurological deterioration (within 7 d): OR, 2.43; 95% CI, 1.25–4.73; <i>P</i> =0.008		(target size=289 per group)	major vascular events at 90 d but increased the risk of early neurological deterioration
COCHRANE Bath PM and Krishnan K ²²⁶ 2014 <u>25353321</u>	Aim: To assess the clinical effectiveness of altering blood pressure in people with acute stroke, and the effect of different vasoactive drugs on blood pressure in acute stroke Study type: Meta- analysis of RCTs Size: N=17,011 (from 26 trials)	Inclusion criteria: • As per individual trials • In acute ischemic stroke and ICH • Age ≥18 y Exclusion criteria: As per individual trials	Intervention: Treatment started for BP reduction within the acute phase (n=8497) Comparator: No new treatment started for BP reduction within the acute phase (n=8514)	1° end point: • Death or dependency (mRS >2 or 3) ≥ 1 mo after the stroke: OR, 0.98; 95% CI, 0.92-1.05 • Blood pressure lowering did not reduce death or dependency either by drug class (OR, 0.98; 95% CI, 0.92–1.05), stroke type (OR, 0.98; 95% CI, 0.92– 1.05), or time to treatment (OR, 0.98; 95% CI, 0.92– 1.05) Safety end points: Early neurological decline: OR, 1.07; 95% CI, 0.92– 1.24	Treatment within 6 h of stroke appeared effective in reducing death or dependency (OR: 0.86, 95% CI: 0.76–0.99) but not death (OR: 0.70, 95% CI: 0.38–1.26) by the end of the trial	Great heterogeneity across included trials	Early treatment of hypertension was safe but ineffective to prevent death or dependency

CATIS He J, et al. ²²⁵ 2014 <u>24240777</u>	Aim: Evaluate whether immediate blood pressure reduction in patients with acute ischemic stroke would reduce death and major disability at 14 d or hospital discharge Study type: RCT Size: N=4071	Inclusion criteria: • Age >22 y • Acute ischemic stroke within previous 24 h Exclusion criteria: • Impaired level of consciousness • Hypertensive emergency • BP >220/120 • Atrial fibrillation • Intravenous alteplase	Intervention: Antihypertensive medication to maintain BP <140/90 for the first wk (n=2038) Comparator: No antihypertensive medication for the first wk (n=2033)	 1° end point: Death or major disability (mRS 3–6) at 14 d: OR, 1.0 (95% CI, 0.88–1.14; P=0.98) Safety end point: Vascular disease events P=0.28 Recurrent stroke P=0.07 	 Death or major disability (mRS 3–5) at 90 d: OR, 0.99 (95% CI, 0.86–1.15; <i>P</i>=0.93) Lower blood pressure at 14 d (mean difference of - 8.6 mmHg in SBP and -3.9 mmHg in DBP; <i>P</i><0.001) and at 90 d (mean difference of - 2.9 mmHg in SBP and -1.4 mmHg in DBP; <i>P</i><0.001) in the active arm 	Antihypertensive regimen was not standardized	 Early treatment of hypertension was safe but ineffective to prevent death or dependency Early initiation of anti- hypertensives was associated with better BP control at 2 wk
SCAST Sandset EC, et al. ²²⁴ 2011 <u>21316752</u>	Aim: Examine whether blood-pressure lowering treatment candesartan is beneficial in patients with acute stroke and hypertension Study type: RCT Size: N=2029	Inclusion criteria: • Acute ischemic stroke (or ICH) within previous 30 h • SBP >140 mmHg • Age >18 y Exclusion criteria: • Impaired level of consciousness • Hypertensive emergency	Intervention: Candesartan 4– 16 mg/d for 7 d (n=1017) Comparator: Placebo (n=1004)	 1° end point: mRS at 6 mo: OR for worse outcome: 1.17 (95% Cl, 1.00–1.38; <i>P</i>=0.048) Vascular death or MI or recurrent stroke within 6 mo: HR, 1.09 (95% Cl, 0.84–1.41; <i>P</i>=0.52) Safety end point: Stroke progression: RR, 1.47 in favor of placebo; 95% Cl, 1.01–2.13; <i>P</i>=0.04 Symptomatic hypotension: no difference; <i>P</i>=0.29 	• Death from any cause, vascular death, ischemic stroke, hemorrhagic stroke, MI, stroke score, and Barthel Index at 7 d and 6 mo: <i>P</i> >0.1 for all comparisons	Mean BPs were similar in both groups after the first 7 d	Early initiation of candesartan was safe but ineffective to prevent death or dependency

COSSACS Robinson TG, et al. ²²³ 2010 <u>20621562</u>	Aim: Assess the efficacy and safety of continuing or stopping pre-existing antihypertensive drugs in patients with acute stroke Study type: RCT	Premorbid disability Inclusion criteria: Acute ischemic stroke (or ICH) within previous 48 h Exclusion criteria:	Intervention: Continue previous antihypertensive medication/s (n=379) Comparator:	 Renal failure: no difference; P=0.37 1° end point: Death or major disability (mRS 3–6) at 14 d: RR, 0.86 (95% Cl, 0.65–1.14; P=0.3) Safety end point: Adverse events, minor and ecripue: Do 0.5 for all 	• 2-week NIHSS: <i>P</i> =0.46 and 2-week Barthel Index: <i>P</i> =0.30 • 2-week BP: significantly	• Trial was terminated early because of slow recruitment, and consequently it was underpowered	• Early reinitiation of antihypertensive medications was safe but ineffective to prevent death or
	Size : N=763	 Impaired level of consciousness Unable to swallow Hypertensive emergency BP >200/120 mmHg Premorbid disability Intravenous alteplase 	Stop previous antihypertensive medication/s (n=384)	and serious: <i>P</i> >0.05 for all	lower in the continue arm (mean difference of -13 mmHg in SBP and -8 mmHg in DBP) <i>P</i> <0.0001 • 6-month mortality: <i>P</i> =0.98; 6-month disability <i>P</i> <0.05	 Treatment was not homogeneous (different drugs, no specific BP target) No differences when analysis restricted to patients with ischemic stroke 	dependency • Early reinitiation of antihypertensive s was associated with better BP control at 2 wk
PRoFESS Bath PM, et al. ²²¹ 2009 <u>19797187</u>	Aim: Assess the safety and efficacy of lowering blood pressure with telmisartan (on top of standard poststroke antihypertensive treatment) in patients with acute ischemic stroke Study type: RCT Size: N=1360	Inclusion criteria: • Age >55 or 50–54 y with multiple vascular risk factors • Acute ischemic hemispheric stroke within 72 h of onset Exclusion criteria:	Intervention: Oral telmisartan 80 mg/d (n=647) Comparator: Placebo (n=713)	1° end point: Death or dependency at 30 d: OR, 1.03; 95% CI, 0.84–1.26; <i>P</i> =0.81 Safety end point: Serious adverse events: <i>P</i> >0.05	 Death or dependency at 7 and 90 d: P>0.05 Composite recurrent vascular events at 90 d: P=0.40 Mini-Mental State Examination at 90 d: P>0.05 	 Pre-specified analysis of a larger trial with factorial design Trial evaluated mild strokes (mean NIHSS=3) 	Early treatment of hypertension with telmisartan was safe but ineffective to prevent death or dependency

CHHIPS Potter JF, et al. ²²² 2009 <u>19058760</u> Eveson DJ, et	Aim: Assess the feasibility, safety, and effects of two regimens for lowering blood pressure in patients with acute stroke Study type: RCT Size: N=179 Aim: Explore the	 Inability to swallow Pre-existent disability Renal failure or renal artery stenosis Hyperkalemia Recent myocardial infarction or severe coronary artery disease Inclusion criteria: Acute ischemic stroke (or ICH) within previous 36 h SBP >160 mmHg Exclusion criteria: Coma Hypertensive emergency BP >200/120 mmHg Premorbid disability Inclusion 	Intervention: Labetalol (n=58) or lisinopril (n=58), titrated to keep SBP <160 mmHg for 2 wk Comparator: Placebo (n=63)	 1° end points: Death or major disability (mRS 3–6) at 14 d: RR, 1.03, 95% Cl, 0.80–1.33; <i>P</i>=0.82 Safety end point: Early neurological decline: RR, 1.22; 95% Cl, 0.33–4.54; <i>P</i>=0.76 Serious systemic adverse events: RR, 0.91; 95% Cl, 0.69–1.12; <i>P</i>=0.50 1° end point: Functional 	Mortality at 3 mo lower in active arm (9.7% vs. 20.3%, HR: 0.40 (95% CI: 0.2– 1.0; <i>P</i> =0.05)	Pilot trial with small sample size	Early treatment of hypertension was safe but ineffective to prevent death or dependency
al. ²²⁰ 2007 <u>17324738</u>	hemodynamic effect and safety of oral lisinopril initiated within 24 h after an acute stroke	criteria: • Acute ischemic stroke within 24 h of onset	Oral lisinopril 5– 10 mg for 14 d (n=18) Comparator: Placebo (n=22)	 Safety end point: Punctional outcomes at 3 mo: P=0.7 Safety end point: Excessive drop in BP: P>0.05 		Single center Designed to evaluate safety	lisinopril was safe

	Study type: RCT (phase	• SBP >140		Doubling in serum			
		mmHg or DBP		creatinine concentration:			
	,	>90 mmHg		<i>P</i> >0.05			
	Size: N=40	2 00 mining		1 - 0.03			
		Exclusion					
		criteria:					
		Coma					
		Re-existent					
		disability					
		 Inability to 					
		swallow					
		Severe carotid					
		stenosis					
		Advanced					
		heart failure					
		Acute					
		myocardial					
		infarction within					
		6 mo					
		Severe aortic					
		stenosis					
ACCESS	Aim: Assess the safety of	Inclusion	Intervention:	1° end points: Barthel	Combined	 Terminated 	 Early initiation
Schrader J, et	modest blood pressure	criteria:	Oral	Index at 3 mo: 87.0 ± 22.9	mortality,	early (planned	of oral
al. ²¹⁹	reduction in the early	• Age 18–85 y	candesartan 4-	vs. 88.9±19.9; <i>P</i> >0.05	cerebrovascular	size 500)	candesartan
2003	treatment of stroke	Acute	16 mg/d titrated	10.00.00	and	 Designed to 	was safe but not
12817109		ischemic	to keep BP	Safety end point:	cardiovascular	evaluate safety	associated with
	Study type: RCT (phase	hemispheric	<160/100 for 7 d	Cerebral complications	events at 12 mo:	evaluate survey	reduction in
)	stroke within 36	(n=173)	at 7 d: <i>P</i> >0.05	OR, 0.475 (95%		disability.
		h of onset	(Cardiac complications at	Cl, 0.252–0.895)		Oral
	Size: N=339	Severe	Comparator:	7 d: <i>P</i> >0.05	• BP at 3, 6, and		candesartan
		hypertension	Placebo (n=166)	7 4.7 - 0.00	12 mo: <i>P</i> >0.05		was associated
		(SBP ≥200	, , , , , , , , , , , , , , , , , , ,				with reduced
		mmHg or DBP					rates of mortality
		≥110 mmHg					and
		within 6–24 h					cardiovascular
		after admission,					events at 12 mo
		or SBP ≥180					despite similar
		mmHg or DBP					long-term
		≥105 mmHg					control of BP

					1		
		within 24–36 h					
		after admission					
		Exclusion					
		criteria:					
		 Coma 					
		 Severe carotid 					
		stenosis					
		 Advanced 					
		heart failure					
		Unstable					
		angina					
		Severe aortic					
		or mitral					
		stenosis					
VENUS	Aim: Determine	Inclusion	Intervention:	19 and nainta: Dooth or	Change in	Study rationale	Early oral
Horn J, et al. ²¹⁸	the safety and efficacy of	criteria:	Oral nimodipine	1° end points: Death or		was based on	nimodipine was
2001	nimodipine on the		30 mg four	dependency at 3 mo: 32%	neurological status at 24 h:	presumed	associated with
11157183	functional outcome of	• Age 18–85 y	times/d for 10 d	vs. 27% (RR, 1.2; 95% Cl,	<i>P</i> =0.35		
1110/100		Acute ischemic		0.9–1.6; NS)		neuroprotective	worse outcomes
	acute ischemic	or hemorrhagic	(n=225)		Mortality at 10 d:	effect of	after acute
	stroke	stroke within 6 h	0	Safety end point: Major	RR, 0.7; 95%	nimodipine	ischemic stroke
	Cturks to a DOT	of onset	Comparator:	adverse events: P>0.1	CI, 0.4–1.4	rather than	
	Study type: RCT		Placebo (n=229)			solely its	
	e : b 454	Exclusion				antihypertensive	
	Size: N=454	criteria:				effect	
		Coma					
		 Minor deficits 					
		 Inability to 					
		swallow pills					
		Severe					
				1	1		
		comorbidity					
		comorbidity • Pre-existent					
		Pre-existent					

Kaste M, et al. ²¹⁶ 1994 <u>8023348</u>	Aim: Determine the safety and efficacy of nimodipine on the functional outcome of acute ischemic stroke Study type: RCT Size: N=350	Inclusion criteria: • Age 16–69 y •Acute ischemic hemispheric stroke within 48 h of onset Exclusion criteria: • Coma • TIA • Severe comorbidity	Intervention: Nimodipine 120 mg/d for 21 d (n=174) Comparator: Placebo (n=176)	1° end points: All at 12 mo: • Rankin score: scores 1– 2 in 96 patients of both groups (<i>P</i> >0.5) • Neurological score: median 28 vs. 25 (<i>P</i> >0.5) • Mobility: unaided in 117 vs. 126 patients (<i>P</i> >0.5) Safety end point: None specified	Functional outcome at 3 mo, mortality at 3 and 12 mo, and residence at 12 mo: all <i>P</i> >0.5	Study rationale was based on presumed neuroprotective effect of nimodipine rather than solely its antihypertensive effect	 No functional benefit from the early initiation of antihypertensive therapy with nimodipine Greater fatality rates on the nimodipine arm during the first 3 mo
INWEST Wahlgren NG, et al. ²¹⁷ 1994 <u>Link to article</u>	Aim: Determine the safety and efficacy of nimodipine on the functional outcome of acute ischemic stroke Study type: RCT Size: N=295	Inclusion criteria: • Age ≥40 y • Acute ischemic stroke in carotid territory within 24 h of onset • Stable hemiparesis Exclusion criteria: • Coma • Pre-existent disability • Unstable cardiac disease • Severe comorbidity	Intervention: Intravenous nimodipine 1 mg/h (n=101) or 2 mg/h (n=94) for 5 d followed by oral nimodipine 30 mg four times/d for 16 d Comparator: Placebo (n=100)	 1° end points: Neurological outcome by the Orgogozo scale at 21 d: significantly worse in the 2 mg/h nimodipine arm (<i>P</i>=0.0005) Functional outcome by Barthel Index at 21 d: significantly worse in the 2 mg/h nimodipine arm (<i>P</i>=0.0033) Safety end point: Mortality: <i>P</i>>0.1 	Neurological outcome by the Orgogozo and Mathew scales and functional outcome by Barthel Index at 12 and 24 wk: all markedly worse in the 2 mg/h nimodipine arm (<i>P</i> <0.001)	 Study rationale was based on presumed neuroprotective effect of nimodipine rather than solely its antihypertensive effect Trial terminated early because of worse outcomes in the high-dose active arm (planned size=600 patients) Trial terminated early because of futility determined in an interim analysis (planned 	Early IV nimodipine was associated with worse outcomes after acute ischemic stroke in a dose- dependent manner

			size=1500 patients)	

Abbreviations: BP, blood pressure; CI, confidence interval; DBP, diastolic blood pressure; h, hour; HR, hazard ratio; HRQOL, health-related quality of life; ICH, intracerebral hemorrhage; IV, intravenous; MI, myocardial infarction; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; RCT, randomized clinical trial; RR, relative risk; SBP, systolic blood pressure; and y, year.

Literature search topic: Blood pressure II

Table LI. Deleted

Table LII. Deleted

Table LIII. Randomized Clinical Trials of Nutrition

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point	Study Limitations; Adverse Events	Summary Conclusions Comments
Geeganage C, et al. ²³⁶ 2012 <u>23076886</u>	Aim: To assess the effectiveness of interventions for treatment of dysphagia and nutritional and fluid supplementation in patients with acute and subacute (within 6 mo from onset) stroke Study type: Cochrane review RCT Size: N=6779 participants (33 studies)	Inclusion criteria: Participants recruited with a clinical diagnosis of stroke within 6 mo Exclusion criteria: Studies with no control group, not randomized, or no relevant outcome data available	Intervention: Interventions for dysphagia; feeding strategies and timing (early – within 7 d) vs. later); fluid supplementation; swallowing therapy (n=967), feeding (route, timing, supplementation (n=5812) Comparator: N/A in review	 1° end point: Functional outcome: death or dependency, or death or disability, at the end of the trial; results related to PEG vs. NG supplemental feeding: PEG was associated with fewer treatment failures (t=3; n=72; OR, 0.09; 95% CI, 0.01–0.51; <i>P</i>=0.0007; 12=0% PEG was associated with fewer GI bleeding events (t=1; n=321; OR, 0.25%; 95% CI, 0.09– 0.69; <i>P</i>=0.0007) 	 Case fatality at the end of the trial Neurological deterioration within 4 wk Late disability or dependency at the end of the trial Proportions with dysphagia at the end of the trial Improvement in dysphagia 	The Cochrane Collaborative assessed the risk of bias in the included trials using the "Risk of Review of Intervention"; the assessment included: sequence generation, allocation concealment, blinding of participants and personnel, blinding of	 Continues to be insufficient data on the effect of swallowing therapy, feeding, and nutritional and fluid supplementation on functional outcome and death in dysphagic patients with acute stroke Behavioral interventions and acupuncture

				 PEG was associated with higher feed delivery (t=1; n=30; MD=22.00; 95% Cl, 16.15–27.85; <i>P</i><0.000001) PEG was associated with fewer pressure sores (t=1; n=321; OR, 3.10; 95% Cl, 0.98–9.83; <i>P</i>=0.05) PEG and NG tube feeding did not differ for end-of-trial case fatality (t=5; n=455; OR, 0.81; 95% Cl, 0.42–1.56) Safety end point: N/A 		outcomes assessment, incomplete outcome data, and selective outcome reporting	reduced dysphagia • PEG reduced treatment failures and gastrointestinal bleeding, and had higher feed delivery and albumin concentration • Reduced pressure sores was associated with nutritional supplementation
FOOD Trial Collaboration Dennis M, et al. ²³⁵ 2006 <u>16409880</u>	Aim: To determine whether routine oral nutritional supplementation of a normal hospital diet improves outcome after stroke Study type: RCT – three pragmatic multicenter randomized Size: N=5033 patients (131 hospitals in 18 countries)	Inclusion criteria: Stroke patients with dysphagia Exclusion criteria: SAH, TIA, coma patients; or patients already entered into the same FOOD Trial	Trial 1 • Intervention: Normal hospital diet (n=2007) • Comparator: Normal hospital diet plus oral nutritional supplements (equivalent to 360 ml of 1.5 kcal/ml, 20 g protein per d) until hospital discharge (n=2016) Trial 2 • Intervention: Early enteral tube (n=429) • Comparator: No tube feeding	1° end point: • Trial 1: Normal vs normal plus supplements: the supplemented diet was associated with an absolute reduction in risk of death of 0.7% (95% CI, -1.4–2.7; P=0.5) and a 0.7% (95% CI, -2.3 to 3.8, P=0.6) increased risk of death or poor outcome • Trial 2: Early enteral vs. no tube feeding for more than 7 d: early tube feeding was associated with an absolute reduction in risk of death of 5.8% (95% CI, -0.8 to 12.5; P=0.09) and a reduction in death or poor outcome of 1.2% (95% CI, -4.2 to 6.6; P=0.7)	None	 Failure to reach sample sizes in all: Trial 1, 67%; Trial 2, 43%; Trial 3, 32% Stopping recruitment prior to sample sizes being achieved can lead to bias in RCTs 	 Trial 1 unable to confirm the expected 4% absolute benefit for death or poor outcome from routine oral nutritional supplements; did not support supplementation of hospital diet for unselected stroke patients who are predominantly well nourished on admission Trial 2 suggests that a policy of early tube feeding may

for more than 7 d (avoid) (n=430) Trial 3 • Intervention: Tube feeding via PEG (n=162) • Comparator: Tube feeding via NG tube (n=159)	• Trial 3: Tube feeding via PEG or NG tube: PEG was associated with an increase in absolute risk of death of 1.0% (95% CI, -10.0 to 11.9; <i>P</i> =0.9) and an increased risk of death or poor outcome of 7.8% (95% CI, 0.0–15.5; <i>P</i> =0.05)	r () () () () () () () () () () () () ()	substantially reduce the risk of dying after stroke but it is very unlikely the alternative policy of avoiding early tube feeding would improve survival • Trial 3 data
	Safety end point: N/A	t 2 1 0 1	suggest that in the first 2–3 wk after stroke better functional butcomes result from feeding via NG tube than PEG tube

Abbreviations: CI indicates confidence interval; GI, gastrointestinal; HR, hazard ratio; MD, mean difference; N/A, not available; NG, nasogastric; OR, odds ratio; PEG, percutaneous endoscopic gastrostomy; RCT, randomized clinical trial; SAH, subarachnoid hemorrhage; TIA, transient ischemic attack. Literature search topic: Nutrition

Table LIV. Nonrandomized Trials, Observational Studies, and/or Registries of Oral Hygiene

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Seedat J and Penn C ⁴⁰² 2016 <u>26974243</u>	Study Type: Quantitative, quasi- experimental parallel group design Size: There were two groups of participants with oropharyngeal dysphagia: • Group one (study group, N=23) was recruited by	Inclusion criteria: Diagnosed with either stroke or traumatic brain injury as their primary medical diagnosis with a confirmed diagnosis of oropharyngeal dysphagia	1° end point: Aspiration pneumonia Results : The Fisher's exact test showed that there was a significant, moderate association between the occurrence of aspiration pneumonia and group: all seven were participants from the comparison group (<i>P</i> =0.0092)	• No participant from either group presented with aspiration pneumonia at the initiation of dysphagia intervention (entry into the study), although signs of aspiration were observed and aspiration pneumonia developed over the course of intervention in the comparison group, but there was no diagnosis of aspiration in the study group

	consecutive sampling, received regular oral care and were not restricted from drinking water; however, all other liquids were restricted • Group two (comparison group, N=23) was recruited via a retrospective record review, received inconsistent oral care and were placed on thickened liquids or liquid- restricted diets	Exclusion criteria: N/A		 A limitation of the current study was the exclusion of videofluoroscopy pre-intervention for each participant in the study group to confirm swallowing function It is possible to reduce adverse medical effects of aspiration including fatality by implementing a cost-effective and low resource oral care protocol for patients with dysphagia Further studies should be completed
Wagner C, et al. ²³⁹ 2016 <u>26584429</u>	Study Type: Cohort study compared the proportion of pneumonia cases in hospitalized stroke patients before and after implementation of a systematic intervention Size: N=1656 admissions (707 formed historical controls; 949 were in the intervention group)	Inclusion criteria: All patients hospitalized with acute ischemic stroke or intracerebral hemorrhage admitted to a large, urban academic medical center in Boston, MA, USA from May 31, 2008, to June 1, 2010 (epoch prior to implementation of OHC), and from January 1, 2012, to December 31, 2013 (epoch after full implementation of OHC), who were 18 y of age and hospitalized for ≥2 d	 1° end point: Hospital-acquired pneumonia Results: The unadjusted incidence of hospital-acquired pneumonia was lower in the group assigned to OHC compared to controls (14 vs. 10.33%; <i>P</i>=0.022), unadjusted OR, 0.68 (95% CI, 0.48–0.95; <i>P</i>=0.022) After adjustment for influential confounders, the OR of hospital-acquired pneumonia in the intervention group remained significantly lower at 0.71 (95% CI, 0.51–0.98; <i>P</i>=0.041) 	In this large hospital-based cohort of patients admitted with acute stroke, systematic OHC use was associated with decreased odds of hospital- acquired pneumonia

		were eligible for inclusion Exclusion criteria: N/A		
Sorensen RT, et al. ²³⁷ 2013 <u>23636069</u>	Study type: Controlled trial cohort study Size: N=146 hospitalized acute stroke patients included in three groups: an intervention group (N=58), one internal control group (N=58, retrospectively selected from same clinic), and one external control group (N=30) from a comparable stroke unit in a neighboring hospital	Inclusion criteria: Hospitalized acute stroke patients with moderate or severe dysphagia Exclusion criteria: Active metastatic cancer, severe liver or kidney failure, and terminal illness including cancellation of active treatment within 3 d after admission at the stroke unit	 1° end point: The intervention consisted of early screening with a clinical method of dysphagia screening, the Gugging Swallowing Screen, and intensified oral hygiene; investigate whether the incidence of aspiration pneumonia could be reduced in such patients by an early screening for dysphagia Results: The incidence of x-ray verified pneumonia was 4 of 58 (7%) in the intervention group compared with 16 of dysphagia and intensified oral hygiene 58 (28%) in the internal control group (<i>P</i><0.01) and with 8 of 30 (27%) in the external control group (<i>P</i><0.05) 	 Cohort studies have shown that oral hygiene protocols may help reduce aspiration pneumonia after stroke The intervention group received early and systematic dysphagia screening (which indicated recommendations for diet administrated orally or by tube) together with intensified oral hygiene The control group contained patients who were not systematically screened for dysphagia within 24 h and who received unsystematic and arbitrary oral hygiene without the use of antibacterial mouth rinse with chlorhexidine Pneumonia was reduced in the intervention group (7% vs. 28%) The efficacy of oral hygiene portion cannot be separated from the combination

Abbreviations: CI indicates confidence interval; OHC, oral health care; and OR, odds ratio. Literature search topic: Oral care

Table LV. Randomized Clinical Trials of Oral Care

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
Brady MC, et al. ²³⁸ 2006 <u>17054189</u>	Aim: To compare the effectiveness of staff led OHC interventions with standard care for ensuring oral hygiene for individuals affected after a stroke (post stroke) Study type: Intervention review of RCT that evaluated one or more interventions designed to improve oral hygiene Size: N=470 patients (3 studies)	Inclusion criteria: • RCTs evaluating one or more interventions designed to improve oral health • Recruited from a health care setting with a mixed population of individuals post- stroke Exclusion criteria: Studies that did not have patient specific data	Interventions: • OHC education training program: staff trained (n=40), patients receiving OHC interventions (n=132) • Decontami- nation gel (n=103) • Ventilator- associated pneumonia bundle of care augmented with an OHC (n=100) Comparators: • OHC education training program: untrained staff (n=27), standard oral care (n=129) • Placebo gel (n=103) • Standard VAP bundle no	 1° end point: Dental plaque (plaque scale and denture cleanliness scale): OHC demonstrated significant reduction in denture plaque score (P<0.0000.1) No difference in dental plaque (DMS, -0.25; 95% Cl, -0.77 to 0.28) Safety end point: None 	 Patient satisfaction care received, oral comfort and appearance: result not reported Staff knowledge on oral care (<i>P</i>=0.0008) Staff attitude toward oral care (<i>P</i>=0.0001) Presence of oral disease: no evidence of a difference in gingivitis between groups (DMS, -1.57, 95% CI, -2.23 to 0.92; <i>P</i><0.00001) 	Blinding of participants impossible for some OHC, recorded when that happened Incomplete outcome data, selective outcome reporting, sample size calculations, comparability of groups at baseline, reliability of measures used, and evidence of intention-to-treat analysis	 Evidence with review indicates the potential benefits of decontamination gel on the incidence of pneumonia, but further investigation is needed Was not an outcome, but patients receiving the decontamination gel had fewer incidences on pneumonia (one incident) over the course the trial period than those that used the placebo gel (100 participants; seven incidents of pneumonia) (OR, 0.20, CI 95%, 0.05–0.84, <i>P</i>=0.03)

	augmented OHC (n=100)		

Abbreviations: CI indicates confidence interval; DMS, difference in mean score; HR, hazard ratio; N/A, not available; OHC, oral health care; OR, odds ratio; RCT, randomized clinical trial; and RR, relative risk.

Literature search topic: Oral care

Table LVI. Randomized Clinical Trials Comparing Deep Vein Thrombosis Prophylaxis

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
European Stroke Organisation (ESO) guidelines for prophylaxis for VTE Dennis M, et al. ²⁴⁰ 2016 Link to article	Aim: Focused on both non-pharmacological and pharmacological interventions given with the primary objective of reducing the risk of VTE Study type: RCTs and systematic reviews/meta- analyses Size: 24 RCT's reviewed, total (N=22,700)	Inclusion criteria: RCTs and systematic reviews evaluating GCS, IPC, and prophylactic anticoagulation with UFH, LMWH and heparinoids, but no randomized trials evaluating NES Exclusion criteria: Did not include trials that directly compared anticoagulants with antiplatelet medications	Intervention: Pharmacologic or non- pharmacologic interventions: 1. GSC (n=1256) 2. IPC (n=1438) 3. Anti- coagulants UFH (n=5363) 4.LMWH or heparinoid (n=876) Comparator: Care which did not include specific VTE prophylactic intervention: 1. No GCS (n=1262) 2. No IPC (n=1438)	 1° end point: Death or dependency at follow-up Survival (or its reciprocal – mortality) Functional status (mRS, the Oxford handicap scale, the International Stroke trial simple questions, or the Barthel Index) ICH Symptomatic PE (fatal and non-fatal) Major (or serious) extracranial hemorrhages Symptomatic DVT Fractures secondary to falls due to mechanical devices or osteoporosis secondary to prolonged heparin use 	Other outcomes were fatal PE and HRQOL- adjusted survival	 Risk of bias due to limitations in study design and inconsistency of results, indirectness of evidence, imprecision, reporting bias, magnitude of the treatment effect, evidence of a dose-response relationship, and the effect of all plausible confounding The quality of evidence was judged to be moderate and strength of recommendation 	ESO recommendation s: • GCS should not be used in patients with ischemic stroke • Thigh-length IPC should be used for immobile patients • Prophylactic anticoagulation with UFH (5000U × 2, or × 3 daily) or LMWH or heparinoid should be considered in immobile patients with

3. No	Any hemorrhage	weak due to lack	ischemic stroke
anticoagulants	including minor bruising	of blinding	in whom the
(n=10,197)	 Skin breaks which may 	 The strength of 	benefits of
4.Only UFH (n=	be caused by stockings	recommendation	reducing the risk
870	and IPC sleeves	was weak	of VTE is high
			enough to offset
	Results:		the increased
	 GCS had no significant 		risks of ICH and
	effect on death (P=0.41)		extracranial
	 IPC had no significant 		bleeding
	effect, despite a strong		associated with
	trend on deaths during		their use
	treatment period (OR, 82;		 If prophylactic
	95% Cl, 0.66–1.02) but		anticoagulation
	improved survival to 6 mo		is indicated,
	(HR, 0.86; 95% CI, 0.74-		LMWH or
	0.99)		heparinoid
	 Anticoagulants were 		should be
	associated with a reduction		considered
	in DVT (OR, 0.21; 95% CI,		instead of UFH
	0.15–0.29); there were		because of its
	also statistically significant		greater reduction
	increases in sICH (OR,		in risk of DVT,
	1.68; 95% CI. 1.11–2.55)		the greater
	and symptomatic		convenience,
	extracranial hemorrhages		reduced staff
	(OR, 1.65; 95% CI, 1.0–		costs, and
	2.75)		patient comfort
	 For LMWHs of 		associated with
	heparinoids or UFH, there		single daily dose
	were nonsignificant trends		vs. multiple daily
	towards reduction in PE		injections, but
	(P=0.81) and sICH		these
	(P=0.84)		advantages
	There was a statistically		should be
	significant increase in		weighed against
	major extracranial		the higher risk of
	hemorrhage (OR, 3.79;		extracranial
	95% CI, 1.30–11.03;		bleeding, higher
	P=0.01) with LMWH	 	drug costs and

				• The use of LMWH was associated with a statistically significant reduction in DVTs (OR, 0.55; 95% CI, 0.44–0.70), which were mostly asymptomatic Safety end point: None			risks in elderly patients with poor renal function
Sandercock et al. ¹⁹⁸ 2015 <u>25764172</u>	Aim: To assess the effectiveness and safety of anticoagulation within 14 days of ischemic stroke onset Study Type: Meta- analysis Size: N=22,544 (from 14 trials) for PE analysis N=916 (from 10 trials) for DVT analysis N=22,943 (from 16 trials) for ICH analysis N=22,255 (from 18 trials) for major ECH	Inclusion criteria: Patients with confirmed or suspected ischemic stroke within the previous 14 days	Not specified	 End points: PE (symptomatic): OR, 0.60; 95% CI, 0.44-0.81) with anticoagulation vs no anticoagulation DVT (symptomatic or asymptomatic): OR, 0.21; 95% CI, 0.15-0.29 with anticoagulation vs no anticoagulation 	 Symptomatic ICH: OR, 2.55; 95% CI, 1.95- 3.33 for anticoagulation vs no anticoagulation Major ECH: OR, 2.99; 95% CI, 2.24-3.99 	 Different forms of anticoagulation Various forms of defining and assessing the endpoints 	Benefit of anticoagulation in the reduction of VTE are offset by the increased risk of bleeding
CLOTS 3 CLOTS Trials Collaboration Dennis M et al. ⁴⁰³ 2013 <u>23727163</u>	Aim: Establish whether routine application of IPC to the legs of immobile patients who had a stroke reduced their risk of DVT Study type: Multicenter parallel group randomized trial Size: N=2876	Inclusion criteria: Admitted within 3 d of acute stroke and be immobile Exclusion criteria: Age <16 y, SAH, or contraindications	Intervention: Routine care plus IPC (thigh high length) (n=1438) Comparator: Routine care and no IPC (n=1438)	 1° end point: Symptomatic or asymptomatic DVT in the popliteal or femoral veins detected on a screening within 30 d of randomization: An absolute reduction in risk of 3.6% (95% Cl, 1.4– 5.8) 	 30- and 60-d death DVT (including symptomatic or asymptomatic calf, popliteal or femoral) Symptomatic DVT, PE confirmed on 	Moderate adherence to IPC Masking poor at times: patient went for screening with device on	• IPC, UFH, or LMWH and heparinoids can reduce the risk of VTE in immobile patients with acute ischemic stroke, but further research is required to

		to IPC		 The adjusted OR for the comparison of 122 of 1267 patients vs. 174 of 1245 patients was 0.65 (95% CI, 0.51–0.84; P=0.001) Deaths in the treatment period occurred in (11%) allocated IPC and (13%) allocated no IPC within the 30 d of treatment period (P=0.057) Skin breaks on the legs were reported in (3%) patients allocated IPC and in 20 (1%) patients allocated no IPC (P=0.002) Falls with injury were reported in (2%) patients in the no-IPC group and in (2%) patients in the no-IPC group (P=0.221) 	imaging or autopsy • Complications of IPC association with days worn (i.e., end date minus start date) divided by the number of days it should have been worn		test whether NES is effective • The strongest evidence is for IPC • Better methods are needed to help stratify patients in the first few wks after stroke onset by their risk of VTE and their risk of bleeding on anticoagulants
Geeganage CM, et al. ⁴⁰⁴ 2013 <u>22516428</u>	Aim: To assess the effect of heparin and other antithrombotic therapies in patients with acute/early ischemic stroke Study type: Systematic review and meta-analysis of RCTs Size: 15 RCTs that fulfilled the selection criteria (N=8045 patients)	Inclusion criteria: RCT assessing anticoagulation (UFH, LMWH, and heparinoid in adults>18 y and within 14 d of acute stroke Exclusion criteria: If trial did not record information on PE and sICH	Intervention: LMWH (n=18,29), heparinoids (n=341), and UFH (n=5875) Comparator: Same as above	Safety end point: None 1° end point: The ratio of sICH to sPE was increased with LMWH (RR: 2.1; 95% CI: 1.03–4.28), but was in approximated unity with heparinoids (RR, 1.27; 95% CI, 0.31–5.17) and UFH (RR, 0.99; 95% CI, 0.65–1.52)	Insufficient data were obtained for other outcomes, precluding further analysis	 Trials were excluded because data on both sICH and sPE were unavailable in the primary publications Many of the included trials did not primarily focus on sICH and PE and so only collected symptomatic and fatal events 	Routine acute use was not recommended but may still be relevant in patients at very high risk of PE (e.g., morbid obesity, previous VTE, and inherited thrombophilia) or if started later, although trials have not assessed these issues

Whiteley W, et al. ¹⁹⁷ 2013 <u>23642343</u>	Aim: To test the hypothesis that a policy of using clinical data to target heparins in patients with ischemic stroke who have a high risk of venous or arterial thromboembolism, and avoiding heparins in patients with a high risk of bleeding, leads to overall better outcomes Study type: Meta-analysis Size: N=22,655 patients; 5 RCTs using UFH, heparinoids and LMWH in acute ischemic stroke included: IST, TOAST, TAIST, HAEST, FISS-tris	Inclusion criteria: Patients with baseline diagnosis of probable or definite ischemic stroke Exclusion criteria: Excluded 22 other trials of heparins because they were small (<100 patients), and were not clearly randomized, or data not readily available	Intervention: RCTs (5) compared heparins (UFH or LMWH) (n=11,478) Comparator: Aspirin (n=10,941)	 1° end point: Prediction of thrombotic events (MI, stroke, deep VTE, or PE) and hemorrhagic events (symptomatic intracranial or extracranial in the first 14 d after stroke: No group had a statistically significant benefit of heparins over aspirin or placebo in an ordinal logistic regression model (<i>P</i>=0.43) for the prevention of death or disability at the time of last follow-up In none of the 16 groups was there evidence of heterogeneity between the risk differences from the different trials There was no visible pattern or trend of increasing benefit or harm across the groups 	The state of being dead or dependent at final follow-up	 Definition of sICH also varied widely among trials The trials used different types and doses of low-dose anticoagulation Predictive variable missing in dataset that may impact predictive models Random error in variable due to data defined and obtained differently (particularly measures of stroke severity) Large RCTs collection of data for death or dependence at end of follow-up rather than data on recurrent events or VTE 	In view of the lack of evidence for heparin prophylaxis in reducing mortality in other categories of high-risk medical patients and in stroke, these data suggest current guideline recommendation s for routine or selective use of heparin in stroke (and perhaps other patients) should be revised
---	--	--	--	--	--	--	--

ACP Clinical Guidelines Qaseem A, et al. ⁴⁰⁵ 2011 22041951	Aim: To assess the benefits and harms of prophylaxis in hospitalized adult medical patients and those with acute stroke Study type: Systematic evidence review Size: Ten trials (N=20,717) evaluated medical patients without stroke, 8 trials (N=15,405) of patients with acute stroke	Inclusion criteria: English- language randomized trials were included if they provided clinical outcomes and evaluated therapy with low- dose heparin or related agents or mechanical measures compared with placebo, no treatment, or other active prophylaxis in the target population Exclusion criteria: Surgical hospitalized patients	 Heparin prophylaxis vs. no heparin prophylaxis in medical patients without stroke (n=20,717) and with stroke (n=15,405) LMWH vs. UFH in medical patients without stroke (n=11,650) and with stroke (n=2785) Medical device for BTE prophylaxis vs. no mechanical devices in medical patients with and without stroke (n=2518) 	 1° end point: Mortality up to 120 d after enrollment: 1. Medical patients without stroke: compared with no heparin prophylaxis, heparin prophylaxis was not associated with a statistically significant reduced risk for mortality (risk ratio: 0.94; 95% CI, 0.84–1.04; I²=0%; absolute reduction); acute stroke patients: LMWH with UFH in patients with acute stroke did not show statistically significant differences for mortality (risk ratio: 1.00; 95% CI, 0.81–1.22; I²=1%; absolute reduction) 2. Medical patients without stroke showed no statistically significant difference in mortality (risk ratio: 0.91; 95% CI, 0.73–1.13; I²=25%; absolute 	 Symptomatic DVT: in medical patients: not statistically significant (RR, 0.78; CI, 0.45– 1.35); in stroke patients: no statistically significant symptomatic DVT, or PE (risk ratio: 1.11; 95% CI, 0.87–1.42) All PE, fatal PE: in medical patients, heparin was associated with reduced risk for PE (risk ratio: 0.69; 95% CI, 0.52–0.90; I²=0%; absolute reduction); in stroke patients, heparin had no statistically significant effect on PE (risk ratio: 	None reported	 In patients with acute stroke, there was no statistically significant benefit from heparin prophylaxis but there was increased risk for major bleeding In both groups, low-dose heparin prophylaxis may have reduced PE and increased risk for bleeding and major bleeding events and had no statistically significant effect on mortality The conclusion of findings indicate little or no net benefit
		prophylaxis in the target population Exclusion criteria : Surgical hospitalized	device for BTE prophylaxis vs. no mechanical devices in medical patients with and without	 0.81–1.22; I²=1%; absolute reduction) 2. Medical patients without stroke showed no statistically significant difference in mortality (risk ratio: 0.91; 95% CI, 0.73–1.13; I²=25%; absolute reduction); stroke patients did not show statistically significant differences for mortality (risk ratio: 1.00; 95% CI, 0.81–1.22; I²=1%; absolute reduction) 	with reduced risk for PE (risk ratio: 0.69; 95% CI, 0.52–0.90; I ² =0%; absolute reduction); in stroke patients, heparin had no statistically significant effect on PE (risk ratio: 0.70; 95% CI, 0.44–1.11; I ² =0%; major bleeding events (risk ratio: 0.89; 95% CI, 0.70–		increased risk for bleeding and major bleeding events and had no statistically significant effect on mortality • The conclusion of findings
				3. Medical results showed no statistically significant difference in risk for mortality (risk ratio: 1.11; 95% CI, 0.87–1.42)	1.15; I ² =0%; • Bleeding events: in medical patients risk for major		

1		T.,	
		bleeding events	
	Safety end point: None	increased but	
		did not reach	
		statistical	
		significance (risk	
		ratio: 1.49; 95%	
		CI, 0.91–2.43;	
		I ² =16%; absolute	
		increase); in	
		stroke patients	
		heparin	
		associated with	
		statistically	
		significant	
		increase in	
		major bleeding	
		events (risk	
		ratio: 1.66; 95%	
		Cl, 1.20–2.28;	
		l ² =0%; absolute	
		increase); in 14-	
		day hemorrhagic	
		stroke or serious	
		extracranial	
		hemorrhage	
		(1.3% vs. 0.80%;	
		OR, 1.73; 95%	
		Cl, 1.22–2.46)	
		Mechanical	
		prophylaxis	
		effect on skin in	
		medical and	
		stroke patients	
		(statistically	
		significantly	
		increased	
		among patients	
		treated with	
		compression	
		stockings (risk	

		ratio: 4.02; 95%	
		Cl, 2.34–6.91)	
		(risk ratio: 1.11;	
		95% CI, 0.87–	
		1.42); risk for	
		lower-extremity	
		skin damage	
		statistically	
		significantly	
		increased	
		among patients	
		treated with	
		compression	
		stockings (risk	
		ratio: 4.02; 95%	
		Cl, 2.34–6.91)	

Abbreviations: CI indicates confidence interval; DVT, deep vein thrombosis; ECH, extracranial hemorrhage; ESO, European Stroke Organisation; GCS, graduated compression stockings; HR, hazard ratio; HRQOL, health-related quality of life; ICH, intracranial hemorrhage; IPC, intermittent pneumatic compression; LMWH, low-molecular–weight heparin; MI, myocardial infarction; mRS, modified Rankin Scale; N/A, not available; NES, neuromuscular electrical stimulation; OR, odds ratio; PE, pulmonary embolism; RCT, randomized clinical trial; RR, relative risk; SAH, subarachnoid hemorrhage; sICH, symptomatic intracerebral hemorrhage; UFH, unfractionated heparin; and VTE, venous thromboembolism. Literature search topic: Stroke, DVT prophylaxis

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Meader N, et al. ²⁴¹ 2014 <u>23385849</u>	Study type: Meta- analysis Size: N=2907 (24 studies)	Inclusion criteria: Validation studies of mood questionnaires from inception to 2012 Exclusion criteria: Studies not clearly stating diagnostic status of depression or insufficient data for extraction	 1° end points: Sensitivity and specificity for diagnosis of post-stroke depression; ROC meta-analysis Results: CESD: sensitivity: 0.75 (95% Cl, 0.60–0.85); specificity: 0.88 (95% Cl, 0.71–0.95) HDRS: sensitivity: 0.84 (95% Cl, 0.75–0.90); specificity:0.83 (95% Cl, 0.72–0.90) PHQ-9: sensitivity: 0.86 (95% Cl, 0.70–0.94); specificity: 0.79 (95% Cl, 0.60–0.90) 	Several tools have optimal ROC characteristics for detecting post- stroke depression including the CESD, HDRS, and PHQ-9; however, further research is needed to determine the optimal screening method and timing to diagnose and treat PSD ²⁴²

Abbreviations: CESD indicates Center of Epidemiological Studies-Depression Scale; HDRS, Hamilton Depression Rating Scale; PHQ-9, Patient Health Questionnaire-9; PSD, poststroke depression; and ROC, receiver operating curve. Literature search topic: Depression

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% CI)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
SEVEL Herisson F, et al. ⁴⁰⁶ 2016 <u>27023901</u>	Aim: To test the hypothesis that early sitting could be beneficial to stroke patient outcome Study type: RCT Size: N=138	Inclusion criteria: Age >18 y Exclusion criteria: Massive infarct or contraindication for sitting	Intervention: Early-sitting group patients were seated out of bed at the earliest possible time but no later than one calendar day after stroke onset (n=63) Comparator: Progressively- sitting group was first seated out of bed on the third calendar day after stroke onset (n=75)	1° end point: Primary outcome measure was the proportion of patients with a mRS [0–2] at 3 mo post stroke: there was no difference regarding outcome of people with stroke, with a proportion of mRS [0–2] score at 3 mo of 76.2% and 77.3% of patients in the early- and progressive-sitting groups, respectively (<i>P</i> =0.52) Safety end point: N/A	 Prevalence of medical complications Length of hospital stay Tolerance to the procedure 	 Slow enrollment, could detect beneficial/detrim ental effects of ± 15% of the early sitting procedure on stroke outcome with a realized 37% power; however, enrollment was sufficient to rule out effect sizes >25% with 80% power No blinded assessment of the primary outcome 	There was also no difference between groups for secondary outcome measures, and the procedure was well tolerated in both arms
Morreale M, et al. ⁴⁰⁷ 2016 <u>26220327</u>	Aim: To compare PNF and CTE methods in two different time settings (early vs. standard approach) to evaluate different role of time and techniques in functional	Inclusion criteria: First ever sub- cortical ischemic stroke in the MCA territory and contralateral hemiplegia	Intervention: • All patients were randomly assigned by means of a computer- generated randomization	1° end point: Disability at 3–12 mo (disability measures: mRS and Barthel Index): disability was not different between groups at 3 mo but Barthel Index significantly changed between early	• Six-Minute Walking Test, Motricity Index, MMSE, Beck Depression Inventory: Six- Minute Walking Test (<i>P</i> =0.01)	Homogenous population that may not reflect other strokes; moderate stroke severity in population	A time- dependent effect of rehabilitation on post stroke motor recovery was observed, particularly in

Table LVIII. Randomized Clinical Trials of Mobility Intervention

AVERT	recovery after acute ischemic stroke Study type: We designed a prospective multicenter blinded interventional study of early vs. standard approach with two different methods by means of both PNF and CTE Size: N=340 Aim: Compare the	admitted within 6 and 24 h from symptoms onset Exclusion criteria: NIHSS<2, aphasia, visual disturbances, neglect and/or other spatial representation defects, disorientation or confusion, ongoing seizures, MMSE<26, cardiovascular or neurological instability, hemorrhagic transformation, prior diagnosed neurological disease, chronic inflammatory disease, psychiatric disease, amputation, fractures or neoplasms Inclusion	sequence in blocks of 4 to one to the 4 interventional groups: early PNF (n=110), delayed PNF (n=60), early CTE (n=110), delated CTE (n=60) • Patients in both delayed group underwent to a standard protocol in the acute phase Comparator: Standard approach delayed PNF (n=60), delayed CTE (n=60) Intervention:	vs. delayed groups at 12 mo (<i>P</i> =0.01) Safety end point: Safety outcome: immobility- related adverse events	and Motricity Index in both upper (P=0.01) and lower limbs (P=0.001) increased in early vs. delayed groups regardless rehabilitation schedule	A limitation of	lower limb improvement. According to our results, rehabilitation technique seems not to affect long-term motor recovery
AVERT Trial Collaboration Group ²⁴³ 2015 <u>25892679</u>	effectiveness of frequent, higher dose, very early mobilization with usual care after stroke	criteria: • Age ≥18 y, with confirmed first (or recurrent) stroke (infarct or	High-dose, very early mobilization protocol interventions included:	outcome 3 mo after stroke, defined as a mRS of 0–2: patients in the high-dose, very early mobilization group has less favorable outcomes	included an assumption free ordinal shift of the mRS across the entire range of the scale;	large trials is the small amount of information that can be obtained about potential confounding	mobilization after stroke is recommended in many clinical practice guidelines

			quidalinas or	
			guidelines, or	
			both, is	
			uncertain	

Abbreviations: CTE indicates cognitive therapeutic exercise; h, hours; HR, hazard ratio; ICU, intensive care unit; MCA, mean cerebral artery; min, minutes; MMSE, Mini-Mental State Examination; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; PNF, proprioceptive neuromuscular facilitation; RCT, randomized clinical trial; RR, relative risk; SAH, subarachnoid hemorrhage; SBP, systolic blood pressure; and y, year. Literature search topic: Early mobility

Table LIX. Nonrandomized Trials, Observational Studies, and/or Registries of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Stroke

Study Acronym; Author; Year Published	Study Type/Design; Study Size	Patient Population	Primary End Point and Results (<i>P</i> value; OR or RR; & 95% Cl)	Summary Conclusions Comments
Hemispheric Strok	e			
Sundseth J, et al.251 2017 27942881Study type: Retrospective cohortInclusion criteria: MCA infarction with cerebral edema and decompressive craniectomySize: N=45Exclusion criteria: N/A		MCA infarction with cerebral edema and decompressive craniectomy Exclusion criteria:	1° end point: Early death (during primary hospitalization) Results: MCA infarct with additional anterior or posterior cerebral artery territorial involvement only clinically significant predictor of early in-hospital death	No age-related impact on early death after decompression for MCA infarct
Alexander P, et al. ²⁵⁰ 2016 <u>27884858</u>	Study type: Meta- analysis of RCTs Size: N=338 patients (7 RCTs)	Inclusion criteria: RCTs comparing conservative vs. DHC for ischemic MCA infarct syndrome Exclusion criteria: N/A	 1° end point: Death and disability mRS Results: DHC reduced death 69% vs. 30% Severe disability (mRS=4), 32% and very severe disability (mRS=5), 11% 	 Quality of evidence high for death; low for functional outcome mRS 0–3; moderate for mRS 0–4 (wide CIs and problems in concealment, blinding of outcome assessors, stopping early DHC left 34% with mRS 4–5 and 11% mRS 5

Yang MH, et al. ²⁴⁹ 2015 <u>25661677</u>	Study type: Meta- analysis Size: N=314 patients (6 studies)	Inclusion criteria: RCTs of DHC for stroke Exclusion criteria: N/A	1° end point: N/A Results: DHC reduces mortality, death or major disability (mRS>3) and death or severe disability (mRS>4); associated with slightly higher proportion of major disability (mRS4–5) in survivors	 Compared to conservative treatment DHC decreased mortality and improved functional outcome in a clinically meaningful manner Increase in the proportion of survivors with major disability was not clinically meaningful
Agarwalla PK, et al. ²⁴⁵ 2014 <u>24402484</u>	Study type: Literature review Size: N/A	Inclusion criteria: N/A Exclusion criteria: N/A	1° end point: N/A Results: N/A	 Review of literature on craniotomy in acute stroke Supports current guidelines as written
Suyama K, et al. ²⁵² 2014 <u>25045787</u>	Study type: Retrospective cohort Size: N=355	Inclusion criteria: DHC Exclusion criteria: N/A	1° end point: 30-d mortality and functional outcome (mRS) at 3 mo Results: Overall mortality 18.6%; only 5% with favorable functional outcome (mRS<4); Poor outcome associated with GCS<6 and midbrain compression	 Only 8.7% of patients with malignant MCA infarction underwent DHC in Japan Mean age 67; patients aged >60 y comprised 80% of cohort 22% of patients had mRS=4; 26.9% with mRS=5 Age not found to be independent risk factor of poor outcome
Yu JW, et al. ²⁵³ 2012 <u>23210030</u>	Study type: Retrospective cohort Size: N=131	Inclusion criteria: Malignant MCA infarction, age>18 y, decompressive hemicraniectomy within 48 h of stroke onset; NIHSS>or=18 for right-sided infarction, NIHSS>or=20 for left- sided infarction	 1° end point: Mortality at 30 d and six mo; outcome ("good" outcome mRS≤3; "poor" outcome mRS>3) Results: Reduction in mortality in craniectomy group vs conservative care group (29.3% vs 58.9% at 30 days and 48.3% vs 71.2% at six months). Death rate at six mo was not statistically different between age groups (>or=70 y vs <70 y) nor was rate of favorable outcome (<i>P</i>=0.137, <i>P</i>=0.077) High preoperative NIHSS was associated with higher rate of six-month mortality (<i>P</i>=0.047) 	 Decompressive craniectomy reduced mortality and improved rate of good outcomes Age was not independently associated with death at six months or poor outcome.

Cerebellar Stroke		Exclusion criteria: Preexisting significant disability (mRS>vs=4), pupils fixed and dilated, hemorrhagic infarction >50% MCA territory on CT		
Agarwalla PK, et al. ²⁴⁵ 2014 <u>24402484</u>	Study type: Comprehensive literature review Size: 12 Sigle institution and multi- institution series, N=283	Inclusion criteria: e Sigle institution and multi-institution series in which suboccipital decompression was used in the treatment of cerebellar infarct Exclusion criteria: N/A	1° end point: N/A Results: Suboccipital decompression is a life-saving procedure in patients with massive cerebellar infarctions. Ventriculostomy was commonly performed either in isolation as treatment of hydrocephalus or as adjunctive treatment to suboccipital decompression (60%, n=172); Several studies identify progressive decline in level of consciousness as indication for decompression or ventriculostomy. Long term functional outcomes after suboccipital decompression for massive cerebellar infarctions are correlated with immediate preoperative level of consciousness.	 Non-randomized studies, with a mix of retrospective series of various sizes Cerebellar infarction with symptomatic edema and mass effect may be indicated before neurological deterioration, but the timing is unclear Ventriculostomy is commonly performed; very rare mention of upward herniation only in setting of aggressive cerebrospinal fluid diversion without suboccipital decompression
Mostofi K ²⁴⁶ 2013 <u>23532804</u>	Study type: Retrospective series Size: N=53	Inclusion criteria: Massive cerebellar stroke Exclusion criteria: N/A	1° end point: Morbidity and mortality (GCS at 1 mo) Results: Clinically meaningful improvement in outcomes/GCS in surgical group	 Suboccipital craniectomy improves outcome over medical management Only 3% of patients received ventriculostomy

Raco A, et al. ²⁴⁴ 2003 <u>14580272</u>	Study type: Retrospective cohort Size: N=44	Inclusion criteria: Cerebellar infarct Exclusion criteria: Deep coma	1° end point: mRS and death Results: 20/25 patients without decompression with good outcomes; 13/17 with ventriculostomy or decompression with good outcomes; overall mortality 13.6%	 Most patients treated conservatively did well 8 patients were treated with ventriculostomy only Only 3 patients were treated with ventriculostomy plus decompression One patient treated with decompression only Recommend ventriculostomy for hydrocephalus and worsening consciousness; decompression reserved for worsening despite ventricular drainage
--	---	---	--	---

Abbreviations: CI indicates confidence interval; DHC, decompressive hemicraniectomy; GCS, Glasgow Coma Score; MCA, middle cerebral artery; N/A, not available; and RCT, randomized controlled trial.

Literature search topics: cerebral edema, surgical decompression suboccipital AND Cerebral edema, impact of age AND Cerebral edema, hypothermia, corticosteroids AND Cerebral edema, decompression timing AND Cerebral edema, ventriculostomy, hydrocephalus AND Cerebral edema, barbiturates AND Cerebral edema, corticosteroids AND Cerebral edema, cerebellar decompression

Table LX. Randomized Clinical Trials Comparing Impact of Treatment of Cerebral and Cerebellar Edema Following Acute Ischemic Infarction

Study Acronym; Author; Year Published	Aim of Study; Study Type; Study Size (N)	Patient Population	Study Intervention (# patients) / Study Comparator (# patients)	End Point Results (Absolute Event Rates, <i>P</i> value; OR or RR; & 95% Cl)	Relevant 2° End Point (if any)	Study Limitations; Adverse Events	Summary Conclusions Comments
DESTINY II Juttler E, et al. ²⁵⁴ 2014 <u>24645942</u>	Aim: To determine impact of decompressive craniotomy on patients aged >60 y Study type: RCT Size: N=112	Inclusion criteria: Malignant MCA infarct randomized within 48 h Exclusion criteria: Age <60	Intervention: Decompressive hemicraniectomy (n=49) Comparator: Conservative treatment in the ICU (n=63)	1° end point: Survival without severe disability (mRS <5) at 6 mo: proportion who survived mRS 0-4 was 38% in hemicraniectomy group vs. 18% in control group (Cl, 1.06–7.49; <i>P</i> =0.04); mRS 3 7% surgery group vs. 3% control group	Death at 6 mo	N/A	• Hemi- craniectomy improved primary end point (38% vs. 18%; OR, 2.91; 95% CI, 1.06–7.49; <i>P</i> =0.04) • None with mRS<3; 35% vs.

		y, intracerebral hemorrhage		Safety end point: N/A			15% with mRS=4; 28% vs. 18% with mRS=5 • Improved survival in pts aged >60 y; most patients are disabled
ChiCTR Zhao J, et al. ²⁵⁵ 2012 <u>22528280</u>	Aim: To assess effectiveness of DHC on patients ≤80 y Study type: RCT Size: N=47	Inclusion criteria: Patients aged18–80 y with malignant MCA infarct Exclusion criteria: Age >80 y; DHC > 48 h of stroke onset	Intervention: DHC (n=24) Comparator: Medical management (n=23)	1° end point: mRS at 6 mo: DHC reduced mortality significantly at 6 and 12 mo (33.3 vs. 82.6%, P=0.001); significant reduction in poor outcome (mRS>4) in 36 patients after 6 mo (P <0.001) Safety end point: Significant reduction (P <0.001) in mortality after 36 patients completed 6 mo follow up	 6- and 12- month mortality and mRS after 1 y Subgroup analysis performed for patients aged 60–80 y 	• Stopped early • Concluded that DHC <48 h reduced death and severe disability even in patients aged 60–80 y	 DHC reduced mortality in all subgroups at 6 and 12 mo (12.5% vs. 60.9% and 12.5 vs. 60.9%) Fewer patients had mRS>4 (33.3 vs. 82.6%)
DESTINY, DECIMAL, HAMLET; Vahedi, et al. ²⁴⁷ 2007 <u>17303527</u>	Aim: Analyze effectiveness of decompressive craniectomy in malignant MCA infarction Study type: Pooled analysis of three RCTs Size: N=93	Inclusion criteria: age 18- 80 y with MCA malignant infarction, enrolled in HAMLET, DECIMAL, or DESTINY trials; treated within 48 h after stroke Exclusion criteria: Age>60; failed enrollment	Intervention: Decompressive hemicraniectomy Comparator: Conservative treatment in the ICU	1° end point: mRS at 1 year dichotomized between favorable (0-4) and unfavorable (5 or death); more patients in decompressive group had mRS≤4 (75% vs 24%; aRR 51%; 95% CI, 34-69), an mRS≤3 (43% vs 21%; aRR 23%) and survived (78% vs 29%; aRR 50%) Safety end point: N/A	Case fatality rate at 1 year, mRS dichotomized between 0-3 and 4 to death.	N/A	 Decompressive hemicraniectomy within 48 hours of malignant MCA infarction reduces mortality and increases numbers of patients with favorable outcome (mRS 0-4) Numbers needed to treat of two for survival with

in any of the RCTs	mRS≤4, four for survival with mRS≤3, and two for survival irrespective of functional outcome
-----------------------	--

Abbreviations: CI indicates confidence interval; DHC, decompressive hemicraniectomy; h, hour; HR, hazard ratio; mRS, modified Rankin Scale; N/A, not available; OR, odds ratio; RCT, randomized clinical trial; and y, year.

Literature search topics: Cerebral edema, surgical decompression suboccipital AND Cerebral edema, impact of age AND Cerebral edema, hypothermia, corticosteroids AND Cerebral edema, decompression timing AND Cerebral edema, ventriculostomy, hydrocephalus AND Cerebral edema, barbiturates AND Cerebral edema, corticosteroids AND Cerebral edema, cerebellar decompression

Table LXI. DeletedTable LXII. DeletedTable LXII. DeletedTable LXIV. DeletedTable LXVI. DeletedTable LXVII. DeletedTable LXVII. DeletedTable LXVII. DeletedTable LXXI. DeletedTable LXXI. DeletedTable LXXI. DeletedTable LXXI. DeletedTable LXXI. DeletedTable LXXI. DeletedTable LXXII. DeletedTable LXXIV. DeletedTable LXXIV. DeletedTable LXXIV. DeletedTable LXXIV. DeletedTable LXXV. DeletedTable LXXV. Deleted

Study Acronym;	Acronym; Study Size (P		Primary End Point and Results (P value; OR or RR;	Summary Conclusions
Author; Year Published			& 95% CI)	Comments
Anticoagulation				
Gioia LC, et al. ²⁰⁷ 2016 <u>27222524</u>	Study type: Prospective open- label Size: N=60	Inclusion criteria: Patients with AF treated with rivaroxaban ≤14 d of TIA or ischemic stroke (NIHSS <9) Exclusion criteria: GFR <30 ml/min, contraindication to MRI	 1° end point: Symptomatic HT at day 7 (defined as PH2 with ≥4-point increase in NIHSS score) Results: No patients developed symptomatic HT 	 Rivaroxaban may be safe for initiation ≤14 d of TIA or minor to moderate severity ischemic stroke in patients with AF Study limited by small sample size and observational design
VISTA analysis Abdul-Rahim AH, et al. ⁴¹⁹ 2015 <u>25319957</u>	Study type: Retrospective cohort Size: N=644 (individual patient data from neuroprotection trials in AIS)	Inclusion criteria: AIS with known h/o AF or on baseline ECG; patients randomized to placebo or any drug with no known action on stroke outcome Exclusion criteria: Lacking data on relevant baseline and outcomes data	 1° end point: Ordinal shift mRS at 90 d; recurrent stroke or sICH at 90 d (defined by ≥4-point increase on NIHSS Results: Combined antithrombotic therapy (AC + AP) associated with more favorable ordinal mRS (OR, 1.79; 95% CI, 1.32–2.42) Anticoagulation associated with fewer RS and sICH at 90 d compared to no antithrombotic therapy 	 Initiation of anticoagulation therapy 2–3 d post-stroke associated with fewer events of recurrent stroke with no appreciable increase in rates of sICH; Limitations: nonrandom selection of antithrombotic therapy subject to selection bias - patients in "no antithrombotic group" had higher baseline NIHSS and greater comorbidities; NOACs were not prescribed at the time of these data
RAF Study Paciaroni M, et al. ²⁰² 2015 <u>26130094</u>	Study type: Prospective cohort Size: N=1029 (multicenter Europe and Asia)	Inclusion criteria: Known or newly diagnosed AF Exclusion criteria: Contraindication to AC	1° end point: Composite stroke, TIA, systemic embolism, sICH, major extracranial bleeding within 90 d Results: 12.6% primary outcome HR, 0.53 (0.30–0.93) starting AC 4–14 d vs. <4 d	 Initiating AC 4–14 d from stroke onset in patients with AF had better outcomes; high CHA₂DS₂-VASc, NIHSS, large ischemic lesions, and type of AC associated with composite outcome Study limited by non- randomization

Table LXXVII. Nonrandomized Studies of Early Secondary Prevention in Patients with Acute Ischemic Stroke

Antithrombotics	after Hemorrhagic Tra	ansformation		
Kim JT, et al. ³²² 2014 <u>24587041</u>	Study type: Retrospective analysis Size: N=222	Inclusion criteria: Patients with AIS and hemorrhagic transformation Exclusion criteria: • Early death or lost to f/u • Malignant infarction > 2/3 • Bleeding disorders • H/o recent hemorrhage • Brain surgery	 1° end point: Neurological deterioration, vascular events, and death at 1 mo Results: Antithrombotics vs. no antithrombotics (1.6% vs 11.1%, <i>P</i>=0.041) 	 Suggests patients with AIS and hemorrhagic transformation do better with early reinitiation of antithrombotics than not Study limited by single-center, retrospective analysis
TAIST England TJ, et al. ³²³ 2010 <u>21030711</u>	Study type: Post- hoc analysis from RCT Size: N=1297	Inclusion criteria: Patients within 48 h of AIS, treated with medium and high dose tinzaparin (LMWH) vs. ASA Exclusion criteria: Presence of hemorrhagic transformation on prerandomization head CT	 1° end point: Hemorrhagic transformation at 10 d and functional outcomes at 3 and 6 mo (mRS, BI) Results: No difference in hemorrhagic transformation on LMWH or functional outcomes in patients with HT 	 LMWH is safe to administer in the acute stroke setting Patients with sICH were excluded; post-hoc analysis subject to subject bias
Endovascular Th	nerapy in CeAD			
CADISS subgroup Larsson SC et al. ³²⁵ 2017 <u>28087823</u>	Study type: Retrospective analysis of CeAD patients with and without DA Size: N=264	Inclusion criteria: CeAD patients within 7 d of symptom onset Exclusion criteria • Intracranial artery dissection	1° end point: Difference in recurrent stroke at 12 mo between CeAD patients with DA and without DA Results : DA vs. no DA: OR, 0.84 (95% CI, 0.10–7.31; <i>P</i> =0.88)	 Dissecting aneurysms have a benign natural history and endovascular therapy is not necessary in the majority of cases Corroborated by accompanying systematic review Study limited by possible selection and survival bias

		 Contraindications to antithrombotic therapy Baseline antithrombotic therapy Pregnancy 		
Jensen J, et al. ⁴²⁰ 2016 <u>27286992</u>	Study type: Retrospective analysis Size: N=161	Inclusion criteria: CeAD patients managed with EVT (n=24) vs. no EVT Exclusion criteria: None listed	1° end point: No difference in 90-days mRS ≤2, adjusted OR, 0.62 (0.12–3.14; P=0.56) Results: Adjusted OR, 0.62 (95% CI, 0.12–3.14; P=0.56)	Retrospective analysis prone to selection bias. With medical therapy alone, the overall prognosis and natural history of CeAD, including dissecting aneurysms, is favorable ^{324,325}
Ahlhelm F, et al. ³²⁶ 2013 <u>25187774</u>	Study type: Retrospective case series Size: N=10	Inclusion criteria: CeAD patients managed with stenting due to 1) iatrogenic dissection or 2) recurrent ischemic events despite optimal antithrombotic treatment	 1° end point: Technical success (8/10), complications (3/10), recurrent ischemic events Results: No recurrent ischemic events at mean f/u 47 mo 	 Stenting is feasible for CeAD in patients with recurrent ischemic events despite optimal medical therapy but is rarely indicated Limited by small sample size and selection bias
		Exclusion criteria: N/A		

Abbreviations: AC indicates anticoagulant; AF, atrial fibrillation; AIS, acute ischemic stroke; AP, antiplatelet; CI, confidence interval; BI, Barthel Index; CeAD, cervical artery dissection; DA, dissecting aneurysm; ECG, electrocardiogram; EVT, endovascular therapy; f/u, follow-up; GFR, glomerular filtration rate; h, hour; h/o, history of; HR, hazard ratio; HT, hemorrhagic transformation; IV, intravenous; LMWH, low-molecular-weight heparin; mRS, modified Rankin Scale; N/A, not available; NIHSS, National Institutes of Health Stroke Scale; NOAC, new oral anticoagulant; OR, odds ratio; PH2, parenchymal hematoma type 2; RCT, randomized clinical trial; sICH, symptomatic intracerebral hemorrhage; RR, relative risk; RS, recurrent stroke; and TIA, transient ischemic attack.

Literature search topics: Antiplatelet AND Anticoagulation

Table LXXVIII. Deleted Table LXXIX. Deleted Table LXXX. Deleted Table LXXXI. Deleted Table LXXXII. Deleted

2018 AIS GL Section/Rec # or Table/Heading	Original Wording of Recommendation* Reworded for Clarity in 2018 AIS GL				
1.2. Rec 1	The use of a stroke assessment system by first aid providers is recommended.				
1.2. Rec 3	EMS personnel should provide prehospital notification to the receiving hospital that a potential stroke patient is en route so that the appropriate hospital resources may be mobilized before patient arrival.				
1.3. Rec 1	EMS leaders in coordination with local, regional, and state agencies and in consultation with medical authorities and local experts should develop triage paradigms and protocols that ensure that all patients with a known or suspected stroke are rapidly identified and assessed by use of a validated and standardized instrument for stroke screening, such as the FAST (face, arm, speech test) scale, LAPSS, or the Cincinnati Prehospital Stroke Scale (CPSS).				
1.3. Rec 2	Regional systems of stroke care should be developed. These should consist of the following: a. Healthcare facilities that provide initial emergency care, including administration of intravenous r-tPA, such as primary stroke centers, comprehen stroke centers, and other facilities, and b. Centers capable of performing endovascular stroke treatment with comprehensive periprocedural care, including comprehensive stroke centers a other healthcare facilities, to which rapid transport can be arranged when appropriate.				
1.3. Rec 3	Patients should be transported rapidly to the closest available certified PSC or CSC or, if no such centers exist, the most appropriate institution that provides emergency stroke care as described in the statement.				
1.6. Rec 2	When implemented within a telestroke network, teleradiology systems approved by the Food and Drug Administration (or equivalent organization) are useful in supporting rapid imaging interpretation in time for fibrinolysis decision making.				
1.7. Rec 1	It may be useful for primary stroke centers and other healthcare facilities that provide initial emergency care, including administration of intravenous r- tPA, to develop the capability of performing emergency noninvasive intracranial vascular imaging to most appropriately select patients for transfer for endovascular intervention and to reduce the time to endovascular treatment				
1.7. Rec 2	Endovascular therapy requires the patient to be at an experienced stroke center with rapid access to cerebral angiography and qualified neurointerventionalists. Systems should be designed, executed, and monitored to emphasize expeditious assessment and treatment. Outcomes for all patients should be tracked. Facilities are encouraged to define criteria that can be used to credential individuals who can perform safe and timely intra- arterial revascularization procedures.				
2.1. Rec 1	The use of a stroke rating scale, preferably the National Institutes of Health Stroke Scale (NIHSS), is recommended.				
2.2. Rec 8	If endovascular therapy is contemplated, a noninvasive intracranial vascular study is strongly recommended during the initial imaging evaluation of acute stroke patient but should not delay intravenous r-tPA if indicated. For patients who qualify for intravenous r-tPA according to guidelines from professional medical societies, initiating intravenous r-tPA before noninvasive vascular imaging is recommended for patients who h not had noninvasive vascular imaging as part of their initial imaging assessment for stroke. Noninvasive intracranial vascular imaging should				

	then be obtained as quickly as possible.				
2.3. Rec 2	Baseline electrocardiogram assessment is recommended in patients presenting with acute ischemic stroke but should not delay initiation of intravenous rtPA.				
2.3. Rec 3	Baseline troponin assessment is recommended in patients presenting with acute ischemic stroke but should not delay initiation of intravenous rtPA.				
2.3. Rec 4	The usefulness of chest radiographs in the hyperacute stroke setting in the absence of evidence of acute pulmonary, cardiac, or pulmonary vascular disease is unclear. If obtained, they should not unnecessarily delay administration of fibrinolysis.				
3.2. Rec 2	Patients who have elevated blood pressure and are otherwise eligible for treatment with intravenous rtPA should have their blood pressure carefully lowered so that their systolic blood pressure is <185 mm Hg and their diastolic blood pressure is <110 mm Hg before fibrinolytic therapy is initiated.				
3.5. Rec 1	Intravenous rtPA (0.9 mg/kg, maximum dose 90 mg) is recommended for selected patients who may be treated within 3 hours of onset of ischemic stroke. Physicians should review the criteria outlined in Tables 10 and 11 (which are modeled on those used in the NINDS Trial) to determine the eligibility of the patient.				
3.5. Rec 2	Intravenous rtPA (0.9 mg/kg, maximum dose 90 mg) is recommended for administration to eligible patients who can be treated in the time period of 3 to 4.5 hours after stroke onset. The eligibility criteria for treatment in this time period are similar to those for people treated at earlier time periods within 3 hours, with the following additional exclusion criteria: patients >80 years old, those taking oral anticoagulants regardless of INR, those with a baseline NIHSS score >25, those with imaging evidence of ischemic injury involving more than one third of the MCA territory, or those with a history of both stroke and diabetes mellitus.				
3.5. Rec 8	Intravenous alteplase in patients who have received a dose of LMWH within the previous 24 hours is not recommended. This applies to both prophylactic doses and treatment doses.				
3.5. Rec 11	Treating clinicians should be aware that hypoglycemia and hyperglycemia may mimic acute stroke presentations and check blood glucose levels before intravenous initiation. Intravenous alteplase is not indicated for nonvascular conditions.				
3.5. Rec 12	Because time from onset of symptoms to treatment has such a powerful impact on outcome, delaying treatment with intravenous alteplase to monitor for further improvement is not recommended.				
3.5. Rec 13	In patients undergoing fibrinolytic therapy, physicians should be aware of and prepared to emergently treat potential side effects, including bleeding complications and angioedema that may cause partial airway obstruction.				
3.5. Rec 14	Patients who have elevated blood pressure and are otherwise eligible for treatment with intravenous rtPA should have their blood pressure carefully lowered (Table 9) so that their systolic blood pressure is <185 mm Hg and their diastolic blood pressure is <110 mm Hg before fibrinolytic therapy is initiated. If medications are given to lower blood pressure, the clinician should be sure that the blood pressure is stabilized at the lower level before beginning treatment with intravenous rtPA and maintained below 180/105 mm Hg for at least the first 24 hours after intravenous rtPA treatment.				
3.5. Rec 16	In patients eligible for intravenous rtPA, benefit of therapy is time dependent, and treatment should be initiated as quickly as possible. The door-to-needle time (time of bolus administration) should be within 60 minutes from hospital arrival.				
3.7. Rec 1	Patients eligible for intravenous r-tPA should receive intravenous r-tPA even if endovascular treatments are being considered.				
3.7. Rec 4	Although the benefits are uncertain, the use of endovascular therapy with stent retrievers may be reasonable for carefully selected patients with acute ischemic stroke in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the M2 or M3 portion of the MCAs, anterior cerebral arteries, vertebral arteries, basilar artery, or posterior cerebral arteries.				
3.7. Rec 5	Although the benefits are uncertain, the use of endovascular therapy with stent retrievers may be reasonable for carefully selected patients with acute ischemic stroke in whom treatment can be initiated (groin puncture) within 6 hours of symptom onset and who have causative occlusion of the M2 or M3 portion of the MCAs, anterior cerebral arteries, vertebral arteries, basilar artery, or posterior cerebral arteries.				
3.7. Rec 9	The technical goal of the thrombectomy procedure should be a TICI grade 2b/3 angiographic result to maximize the probability of a good functional clinical outcome.				

3.7. Rec 14	Use of salvage technical adjuncts, including intraarterial fibrinolysis, may be reasonable to achieve these angiographic results if completed within 6 hours of symptom onset.			
3.8. Rec 2	Initial treatment with intra-arterial fibrinolysis is beneficial for carefully selected patients with major ischemic strokes of <6 hours' duration caused by occlusions of the MCA. However, these data are derived from clinical trials that no longer reflect current practice, including the use of fibrinolytic drugs that are not available. A clinically beneficial dose of intra-arterial r-tPA is not established, and r-tPA does not have US Food and Drug Administration approval for intra-arterial use. As a consequence, endovascular therapy with stent retrievers is recommended over intra-arterial fibrinolysis as first-line therapy			
3.8. Rec 3	Intra-arterial fibrinolysis initiated within 6 hours of stroke onset in carefully selected patients who have contraindications to the use of intravenous r-tPA might be considered, but the consequences are unknown.			
3.11. Rec 4	At present, use of devices to augment cerebral blood flow for the treatment of patients with acute ischemic stroke is not well established. These devices should be used in the setting of clinical trials.			
3.12. Rec 1	At present, no pharmacological agents with putative neuroprotective actions have demonstrated efficacy in improving outcomes after ischemic stroke, and therefore, other neuroprotective agents are not recommended.			
3.13. Rec 2	In patients with unstable neurological status (either stroke-in-evolution or crescendo TIA), the efficacy of emergent or urgent carotid endarterectomy is not well established.			
4.2. Rec 3	Supplemental oxygen is not recommended in nonhypoxic patients with acute ischemic stroke.			
4.6. Rec 2	Dysphagia screening is reasonable by a speech-language pathologist or other trained healthcare provider.			
4.6. Rec 4	Selection of instrumental study (fiberoptic endoscopic evaluation of swallowing, videofluoroscopy, fiberoptic endoscopic evaluation of swallowing with sensory testing) may be based on availability or other considerations.			
5.1. Rec 9	Osmotic therapy for patients with clinical deterioration from cerebral swelling associated with cerebral infarction is reasonable.			
5.2. Rec 1	Recurrent seizures after stroke should be treated in a manner similar to other acute neurological conditions, and antiepileptic agents should be selected by specific patient characteristics.			
5.2. Rec 2	Prophylactic use of anticonvulsants is not recommended.			
Table 6: Within 3 h	Intravenous alteplase (0.9 mg/kg; maximum dose, 90 mg) is recommended for selected patients who may be treated within 3 hours of onset of ischemic stroke. Physicians should review the criteria outlined in Tables 10 and 11 (which are modeled on those used in the 2 NINDS trials) to determine the eligibility of the patient.			
Table 6: Age	For otherwise medically eligible patients ≥18 years of age, intravenous alteplase administration within 3 hours is equally recommended for patients <80 and >80 years of age. Older age is an adverse prognostic factor in stroke but does not modify the treatment effect of thrombolysis. Although older patients have poorer outcomes, higher mortality, and higher rates of sICH than those <80 years of age, compared with control subjects, intravenous alteplase provides a better chance of being independent at 3 months across all age groups.			
Table 6: 3-4.5 h	Intravenous alteplase (0.9 mg/kg; maximum dose, 90 mg) is recommended for administration to eligible patients who can be treated in the time period of 3 to 4.5 hours after stroke onset. The eligibility criteria for treatment in this time period are similar to those for people treated at earlier time periods within			
Table 6: Age, Diabetes mellitus, Prior stroke, Severity, OACs, Imaging	3 hours, with the following additional exclusion criteria: patients >80 years old, those taking oral anticoagulants (OACs) regardless of international normalized ratio (INR), those with a baseline NIHSS score >25, those with imaging evidence of ischemic injury involving more than one third of the middle cerebral artery (MCA) territory, or those with a history of both stroke and diabetes mellitus.			
Table 6: Severity 0- to 3-h window	Within 3 hours from symptom onset, treatment of patients with milder ischemic stroke symptoms that are judged as nondisabling may be considered. Treatment risks should be weighed against possible benefits; however, more study is needed to further define the risk-to-benefit ratio.			

The benefit of intravenous alteplase administration for acute stroke patients with a baseline NIHSS score >25 and presenting in the 3- to 4.5-hour window		
is uncertain.		
Preexisting disability does not seem to independently increase the risk of sICH after intravenous alteplase, but it may be associated with less		
neurological improvement and higher mortality. Thrombolytic therapy with intravenous alteplase for acute stroke patients with preexisting disability (mRS		
score ≥2) may be reasonable, but decisions should take into account relevant factors other than mRS (including quality of life, social support, place of residence, need for a caregiver after alteplase administration, patients' and families' preferences, and goals of care).		
Intravenous alteplase may be reasonable in patients who have a history of warfarin use and an INR ≤1.7.		
When there is a history of recent or active vaginal bleeding causing clinically significant anemia, then emergent consultation with a gynecologist is		
probably indicated before a decision about intravenous alteplase is made.		
Intravenous alteplase in acute ischemic stroke known or suspected to be associated with extracranial cervical arterial dissection is reasonably safe within		
4.5 hours and is probably recommended.		
For patients presenting with acute ischemic stroke and a history of recent MI in the past 3 months, treating the ischemic stroke with intravenous alteplase		
is reasonable if the recent MI was non-STEMI, is reasonable if the recent MI was STEMI involving the right or inferior myocardium, and may be		
reasonable if the recent MI was STEMI involving the left anterior myocardium.		
Intravenous alteplase administration for ischemic stroke may be considered in pregnancy when the anticipated benefits of treating moderate to severe		
stroke outweigh the anticipated increased risks of uterine bleeding.		

*Original publication and date noted in 2018 AIS GL. Changes to Class and LOE, if any, are noted in the 2018 GL.

References

- Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2013;44:870–947. doi: 10.1161/STR.0b013e318284056a.
- Saposnik G, Barinagarrementeria F, Brown RD Jr, Bushnell CD, Cucchiara B, Cushman M, deVeber G, Ferro JM, Tsai FY; on behalf of the American Heart Association Stroke Council and the Council on Epidemiology and Prevention. Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2011;42:1158–1192. doi: 10.1161/STR.0b013e31820a8364.
- 3. Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Accuracy of prediction instruments for diagnosing large vessel occlusion in individuals with suspected stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:XXX–XXX. doi: 10.1161/STR. 00000000000160.
- Smith EE, Kent DM, Bulsara KR, Leung LY, Lichtman JH, Reeves MJ, Towfighi A, Whiteley WN, Zahuranec D. Effect of dysphagia screening strategies on clinical outcomes after stroke: a systematic review for the 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:XXX–XXX. doi: 10.1161/STR.00000000000159.
- 5. Schwamm LH, Audebert HJ, Amarenco P, Chumbler NR, Frankel MR, George MG, Gorelick PB, Horton KB, Kaste M, Lackland DT, Levine SR, Meyer BC, Meyers PM, Patterson V, Stranne SK, White CJ; on behalf of the American Heart Association Stroke Council; Council on Epidemiology and Prevention; Interdisciplinary Council on Peripheral Vascular Disease; Council on Cardiovascular Radiology and Intervention. Recommendations for the implementation of telemedicine within stroke systems of care: a policy statement from the American Heart Association. *Stroke*. 2009;40:2635–2660. doi: 10.1161/STROKEAHA.109.192361.
- 6. Higashida R, Alberts MJ, Alexander DN, Crocco TJ, Demaerschalk BM, Derdeyn CP, Goldstein LB, Jauch EC, Mayer SA, Meltzer NM, Peterson ED, Rosenwasser RH, Saver JL, Schwamm L, Summers D, Wechsler L, Wood JP; on behalf of the American Heart Association Advocacy Coordinating Committee. Interactions within stroke systems of care: a policy statement from the American Heart Association/ American Stroke Association. *Stroke*. 2013;44:2961–2984. doi: 10.1161/STR.0b013e3182a6d2b2.
- 7. Deleted
- 8. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW. 2014 AHA/ACC/HRS guideline for the management of patients with atrial

fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society [published correction appears in *Circulation*. 2014;130:e270–271]. *Circulation*. 2014;130:2071–2104. doi: 10.1161/CIR.00000000000040.

- Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, Schwab S, Smith EE, Tamargo RJ, Wintermark M; on behalf of the American Heart Association Stroke Council. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:1222–1238. doi: 10.1161/01.str.0000441965.15164.d6.
- Holloway RG, Arnold RM, Creutzfeldt CJ, Lewis EF, Lutz BJ, McCann RM, Rabinstein AA, Saposnik G, Sheth KN, Zahuranec DB, Zipfel GJ, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Clinical Cardiology. Palliative and end-of-life care in stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:1887–1916. doi: 10.1161/STR.000000000000015.
- 11. Deleted
- Smith EE, Saver JL, Alexander DN, Furie KL, Hopkins LN, Katzan IL, Mackey JS, Miller EL, Schwamm LH, Williams LS; on behalf of the AHA/ASA Stroke Performance Oversight Committee. Clinical performance measures for adults hospitalized with acute ischemic stroke: performance measures for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:3472–3498. doi: 10.1161/STR.00000000000045.
- Singletary EM, Charlton NP, Epstein JL, Ferguson JD, Jensen JL, MacPherson AI, Pellegrino JL, Smith WW, Swain JM, Lojero-Wheatley LF, Zideman DA. Part 15: first aid: 2015 American Heart Association and American Red Cross guidelines update for first aid. *Circulation*. 2015;132(suppl 2):S574–S589. doi: 10.1161/CIR.0000000000269.
- 14. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, Meschia JF, Ovbiagele B, Yavagal DR; on behalf of the American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2015;46:3020–3035. doi: 10.1161/STR.00000000000074.
- 15. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, Saposnik G, Saver JL, Smith EE; on behalf of the American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association [published correction appears in *Stroke*. 2016;47:e262]. *Stroke*. 2016;47:581–641. doi: 10.1161/STR.0000000000086.
- 16. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research.

Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/ American Stroke Association [published corrections appear in *Stroke*. 2017;48:e78 and Stroke. 2017;48:e369]. *Stroke*. 2016;47:e98–e169. doi: 10.1161/STR.000000000000098.

- 17. Ojike N, Ravenell J, Seixas A, Masters-Israilov A, Rogers A, Jean-Louis G, Ogedegbe G, McFarlane SI. Racial disparity in stroke awareness in the US: an analysis of the 2014 National Health Interview Survey. *J Neurol Neurophysiol.* 2016;7:365.
- Ekundayo OJ, Saver JL, Fonarow GC, Schwamm LH, Xian Y, Zhao X, Hernandez AF, Peterson ED, Cheng EM. Patterns of emergency medical services use and its association with timely stroke treatment: findings from Get With The Guidelines–Stroke. *Circ Cardiovasc Qual Outcomes.* 2013;6:262–269. doi: 10.1161/CIRCOUTCOMES.113.000089.
- Mochari-Greenberger H, Xian Y, Hellkamp AS, Schulte PJ, Bhatt DL, Fonarow GC, Saver JL, Reeves MJ, Schwamm LH, Smith EE. Racial/ethnic and sex differences in emergency medical services transport among hospitalized US Stroke patients: analysis of the national Get With The Guidelines-Stroke Registry. J Am Heart Assoc. 2015;4:e002099. doi: 10.1161/JAHA.115.002099.
- 20. Boden-Albala B, Stillman J, Roberts ET, Quarles LW, Glymour MM, Chong J, Moats H, Torrico V, Parides MC. Comparison of acute stroke preparedness strategies to decrease emergency department arrival time in a multiethnic cohort: the Stroke Warning Information and Faster Treatment Study. *Stroke*. 2015;46:1806–1812. doi: 10.1161/STROKEAHA.114.008502.
- 21. Berglund A, Svensson L, Wahlgren N, von Euler M; HASTA Collaborators. Face Arm Speech Time Test use in the prehospital setting, better in the ambulance than in the emergency medical communication center. *Cerebrovasc Dis.* 2014;37:212–216. doi: 10.1159/000358116.
- 22. De Luca A, Giorgi Rossi P, Villa GF; Stroke Group Italian Society Pre Hospital EMERGENCY SERVICES. The use of Cincinnati Prehospital Stroke Scale during telephone dispatch interview increases the accuracy in identifying stroke and transient ischemic attack symptoms. *BMC Health Serv Res.* 2013;13:513. doi: 10.1186/1472-6963-13-513.
- 23. Lin CB, Peterson ED, Smith EE, Saver JL, Liang L, Xian Y, Olson DM, Shah BR, Hernandez AF, Schwamm LH, Fonarow GC. Emergency medical service hospital prenotification is associated with improved evaluation and treatment of acute ischemic stroke. *Circ Cardiovasc Qual Outcomes.* 2012;5:514–522. doi: 10.1161/CIRCOUTCOMES.112.965210.
- 24. 31. Deleted
- 32. Saver JL, Goyal M, van der Lugt A, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, Cardona P, Devlin TG, Frei DF, du Mesnil de Rochemont R, Berkhemer OA, Jovin TG, Siddiqui AH, van Zwam WH, Davis SM, Castaño C, Sapkota BL, Fransen PS, Molina C, van Oostenbrugge RJ, Chamorro Á, Lingsma H, Silver FL, Donnan GA, Shuaib A, Brown S, Stouch B, Mitchell PJ, Davalos A, Roos YB, Hill MD; HERMES Collaborators. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. *JAMA*. 2016;316:1279–1288. doi: 10.1001/jama.2016.13647.
- 33. Deleted
- 34. Deleted

- 35. Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Xian Y, Hernandez AF, Peterson ED, Schwamm LH. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. *JAMA*. 2014;311:1632–1640.
- 36. Xian Y, Xu H, Lytle B, Blevins J, Peterson ED, Hernandez AF, Smith EE, Saver JL, Messe SR, Paulsen M, Suter RE, Reeves MJ, Jauch EC, Schwamm LH, Fonarow GC. Use of strategies to improve door-to-needle times with tissue-type plasminogen activator in acute ischemic stroke in clinical practice: findings from Target: Stroke. *Circ Cardiovasc Qual Outcomes*. 2017;10:e003227. doi: 10.1161/CIRCOUTCOMES.116.003227.
- 37. Target Stroke Phase II website http://www.strokeassociation.org/STROKEORG/Professionals/TargetStroke/Target-Stroke-Phase-II_UCM_469859_Article.jsp#.Wk1CBd-nF3g. Accessed January 3, 2018.
- 38. Scott PA, Meurer WJ, Frederiksen SM, Kalbfleisch JD, Xu Z, Haan MN, Silbergleit R, Morgenstern LB; INSTINCT Investigators. A multilevel intervention to increase community hospital use of alteplase for acute stroke (INSTINCT): a cluster-randomised controlled trial. *Lancet Neurol.* 2013;12:139–148. doi: 10.1016/S1474-4422(12)70311-3.
- 39. Dirks M, Niessen LW, van Wijngaarden JD, Koudstaal PJ, Franke CL, van Oostenbrugge RJ, Huijsman R, Lingsma HF, Minkman MM, Dippel DW; PRomoting ACute Thrombolysis in Ischemic StrokE (PRACTISE) Investigators. Promoting thrombolysis in acute ischemic stroke. *Stroke*. 2011;42:1325–1330. doi: 10.1161/STROKEAHA.110.596940.
- 40. Phabphal K, Hirunpatch S. The effectiveness of low-cost teleconsultation for emergency head computer tomography in patients with suspected stroke. *J Telemed Telecare*. 2008;14:439–442. doi: 10.1258/jtt.2008.080603.
- 41. Mitchell JR, Sharma P, Modi J, Simpson M, Thomas M, Hill MD, Goyal, M. A smartphone client-server teleradiology system for primary diagnosis of acute stroke. *J Med Internet Res.* 2011;13:e31. doi: 10.2196/jmir.1732.
- 42. Johnston KC, Worrall BB; Teleradiology Assessment of Computerized Tomographs Online Reliability Study. Teleradiology Assessment of Computerized Tomographs Online Reliability Study (TRACTORS) for acute stroke evaluation. *Telemed J E Health*. 2003;9:227–233. doi: 10.1089/153056203322502605.
- 43. Demaerschalk BM, Bobrow BJ, Raman R, Ernstrom K, Hoxworth JM, Patel AC, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Meyer BC; for the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) in Arizona–The Initial Mayo Clinic Experience (AZ TIME) Investigators. CT interpretation in a telestroke network: agreement among a spoke radiologist, hub vascular neurologist, and hub neuroradiologist. *Stroke*. 2012;43:3095–3097. doi: 10.1161/STROKEAHA.112.666255.
- 44. Spokoyny I, Raman R, Ernstrom K, Demaerschalk BM, Lyden PD, Hemmen TM, Guzik AK, Chen JY, Meyer BC. Pooled assessment of computed tomography interpretation by vascular neurologists in the STRokE DOC telestroke network. *J Stroke Cerebrovasc Dis.* 2014;23:511–515. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.023.
- 45. Puetz V, Bodechtel U, Gerber JC, Dzialowski I, Kunz A, Wolz M, Hentschel H, Schultheiss T, Kepplinger J, Schneider H, Wiedemann B, Wojciechowski C, Reichmann H, Gahn G, von Kummer R. Reliability of brain CT evaluation by stroke neurologists in telemedicine. *Neurology*. 2013;80:332–338. doi: 10.1212/WNL.0b013e31827f07d0.

- 46. Demaerschalk BM, Raman R, Ernstrom K, Meyer BC. Efficacy of telemedicine for stroke: pooled analysis of the Stroke Team Remote Evaluation Using a Digital Observation Camera (STRokE DOC) and STRokE DOC Arizona telestroke trials. *Telemed J E Health*. 2012;18:230–237. doi: 10.1089/tmj.2011.0116.
- 47. Kepplinger J, Barlinn K, Deckert S, Scheibe M, Bodechtel U, Schmitt J. Safety and efficacy of thrombolysis in telestroke: a systematic review and meta-analysis. *Neurology*. 2016;87:1344–1351. doi: 10.1212/WNL.00000000003148.
- 48. Fong WC, Ismail M, Lo JW, Li JT, Wong AH, Ng YW, Chan PY, Chan AL, Chan GH, Fong KW, Cheung NY, Wong GC, Ho HF, Chan ST, Kwok VW, Yuen BM, Chan JH, Li PC. Telephone and teleradiology-guided thrombolysis can achieve similar outcome as thrombolysis by neurologist on-site. *J Stroke Cerebrovasc Dis.* 2015;24:1223–1228. doi: 10.1016/j.jstrokecerebrovasdis.2015.01.022.
- 49. Barlinn J, Gerber J, Barlinn K, Pallesen LP, Siepmann T, Zerna C, Wojciechowski C, Puetz V, von Kummer R, Reichmann H, Linn J, Bodechtel U. Acute endovascular treatment delivery to ischemic stroke patients transferred within a telestroke network: a retrospective observational study. *Int J Stroke*. 2017;12:502–509. doi: 10.1177/1747493016681018.
- 50. Vagal A, Meganathan K, Kleindorfer DO, Adeoye O, Hornung R, Khatri P. Increasing use of computed tomographic perfusion and computed tomographic angiograms in acute ischemic stroke from 2006 to 2010. *Stroke*. 2014;45:1029–1034. doi: 10.1161/STROKEAHA.113.004332.
- 51. Demaerschalk BM, Yip TR. Economic benefit of increasing utilization of intravenous tissue plasminogen activator for acute ischemic stroke in the United States. *Stroke*. 2005;36:2500–2503. doi: 10.1161/01. STR.0000185699.37843.14.
- 52. Demaerschalk BM, Durocher DL. How diagnosis-related group 559 will change the US Medicare cost reimbursement ratio for stroke centers. *Stroke*. 2007;38:1309–1312. doi: 10.1161/01.STR.0000260185.74694. a7.
- 53. Penaloza-Ramos MC, Sheppard JP, Jowett S, Barton P, Mant J, Quinn T, Mellor RM, Sims D, Sandler D, McManus RJ; on behalf of the BBC CLAHRC Investigators. Cost-effectiveness of optimizing acute stroke care services for thrombolysis. *Stroke*. 2014;45:553–562. doi: 10.1161/STROKEAHA.113.003216.
- 54. Tan Tanny SP, Busija L, Liew D, Teo S, Davis SM, Yan B. Cost-effectiveness of thrombolysis within 4.5 hours of acute ischemic stroke: experience from Australian stroke center. *Stroke*. 2013;44:2269–2274. doi: 10.1161/STROKEAHA.113.001295.
- 55. Health Quality Ontario. Mechanical thrombectomy in patients with acute ischemic stroke: a health technology assessment. *Ont Health Technol Assess Ser.* 2016;16:1–79.
- 56. Ganesalingam J, Pizzo E, Morris S, Sunderland T, Ames D, Lobotesis K. Cost-utility analysis of mechanical thrombectomy using stent retrievers in acute ischemic stroke. *Stroke*. 2015;46:2591–2598. doi: 10.1161/STROKEAHA.115.009396.
- 57. Song S, Fonarow GC, Olson DM, Liang L, Schulte PJ, Hernandez AF, Peterson ED, Reeves MJ, Smith EE, Schwamm LH, Saver JL. Association of Get With The Guidelines–Stroke program participation and clinical outcomes for Medicare beneficiaries with ischemic stroke. *Stroke*. 2016;47:1294–1302. doi: 10.1161/STROKEAHA.115.011874.
- 58. Generalized efficacy of t-PA for acute stroke: subgroup analysis of the NINDS t-PA Stroke Trial. Stroke. 1997;28:2119–2225.

- Adams HP Jr, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, Woolson RF, Hansen MD. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). *Neurology*. 1999;53:126– 131.
- Frankel MR, Morgenstern LB, Kwiatkowski T, Lu M, Tilley BC, Broderick JP, Libman R, Levine SR, Brott T. Predicting prognosis after stroke: a placebo group analysis from the National Institute of Neurological Disorders and Stroke rt-PA Stroke Trial. *Neurology*. 2000;55:952–959.
- 61. Wahlgren N, Ahmed N, Eriksson N, Aichner F, Bluhmki E, Dávalos A, Erilä T, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Köhrmann M, Larrue V, Lees KR, Machnig T, Roine RO, Toni D, Vanhooren G; for the Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy Investigators. Multivariable analysis of outcome predictors and adjustment of main outcome results to baseline data profile in randomized controlled trials: Safe Implementation of Thrombolysis in Stroke-MOnitoring STudy (SITS-MOST). *Stroke*. 2008;39:3316–3322. doi: 10.1161/STROKEAHA.107.510768.
- 62. Lyden P, Brott T, Tilley B, Welch KM, Mascha EJ, Levine S, Haley EC, Grotta J, Marler J. Improved reliability of the NIH Stroke Scale using video training. NINDS TPA Stroke Study Group. *Stroke*. 1994;25:2220–2226.
- 63. Josephson SA, Hills NK, Johnston SC. NIH Stroke Scale reliability in ratings from a large sample of clinicians. *Cerebrovasc Dis.* 2006;22:389–395. doi: 10.1159/000094857.
- 64. Lyden P, Raman R, Liu L, Emr M, Warren M, Marler J. National Institutes of Health Stroke Scale certification is reliable across multiple venues. *Stroke*. 2009;40:2507–2511. doi: 10.1161/STROKEAHA.108.532069.
- 65. Fonarow GC, Saver JL, Smith EE, Broderick JP, Kleindorfer DO, Sacco RL, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH. Relationship of National Institutes of Health Stroke Scale to 30-day mortality in Medicare beneficiaries with acute ischemic stroke. *J Am Heart Assoc.* 2012;1:42–50. doi: 10.1161/JAHA.111.000034.
- 66. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. *Lancet.* 2007;369:293–298. doi: 10.1016/S0140-6736(07)60151-2.
- 67. Hwang DY, Silva GS, Furie KL, Greer DM. Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. *J Emerg Med.* 2012;42:559–565. doi: 10.1016/j.jemermed.2011.05.101.
- 68. Brazzelli M, Sandercock PA, Chappell FM, Celani MG, Righetti E, Arestis N, Wardlaw JM, Deeks JJ. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. *Cochrane Database Syst Rev.* 2009:CD007424.
- 69. Wardlaw J, Brazzelli M, Miranda H, Chappell F, McNamee P, Scotland G, Quayyum Z, Martin D, Shuler K, Sandercock P, Dennis M. An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation. *Health Technol Assess.* 2014;18:1–368, v. doi: 10.3310/hta18270.

- 70. Wardlaw JM, Seymour J, Cairns J, Keir S, Lewis S, Sandercock P. Immediate computed tomography scanning of acute stroke is costeffective and improves quality of life. *Stroke*. 2004;35:2477–2483. doi: 10.1161/01.STR.0000143453.78005.44.
- 71. Barber PA, Hill MD, Eliasziw M, Demchuk AM, Pexman JH, Hudon ME, Tomanek A, Frayne R, Buchan AM; ASPECTS Study Group. Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J Neurol Neurosurg Psychiatry. 2005;76:1528–1533. doi: 10.1136/jnnp.2004.059261.
- 72. Heidenreich JO, Hsu D, Wang G, Jesberger JA, Tarr RW, Zaidat OO, Sunshine JL. Magnetic resonance imaging results can affect therapy decisions in hyperacute stroke care. *Acta Radiol.* 2008;49:550–557. doi: 10.1080/02841850801958320.
- 73. Lees KR, Emberson J, Blackwell L, Bluhmki E, Davis SM, Donnan GA, Grotta JC, Kaste M, von Kummer R, Lansberg MG, Lindley RI, Lyden P, Murray GD, Sandercock PA, Toni D, Toyoda K, Wardlaw JM, Whiteley WN, Baigent C, Hacke W, Howard G; on behalf of the Stroke Thrombolysis Trialists' Collaborators Group. Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials. *Stroke*. 2016;47:2373–2379. doi: 10.1161/STROKEAHA.116.013644.
- 74. Aghaebrahim A, Streib C, Rangaraju S, Kenmuir CL, Giurgiutiu DV, Horev A, Saeed Y, Callaway CW, Guyette FX, Martin-Gill C, Pacella C, Ducruet AF, Jankowitz BT, Jovin TG, Jadhav AP. Streamlining door to recanalization processes in endovascular stroke therapy. J Neurointerv Surg. 2017;9:340–345. doi: 10.1136/neurintsurg-2016-012324.
- 75. Messe SR, Khatri P, Reeves MJ, Smith EE, Saver JL, Bhatt DL, Grau-Sepulveda MV, Cox M, Peterson ED, Fonarow GC, Schwamm LH. Why are acute ischemic stroke patients not receiving IV tPA? Results from a national registry. *Neurology*. 2016;87:1565–1574.
- 76. Zaidi SF, Shawver J, Espinosa Morales A, Salahuddin H, Tietjen G, Lindstrom D, Parquette B, Adams A, Korsnack A, Jumaa MA. Stroke care: initial data from a county-based bypass protocol for patients with acute stroke. *J Neurointerv Surg.* 2017;9:631–635. doi: 10.1136/neurintsurg-2016-012476.
- 77. IST-3 Collaborative Group. Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. *Lancet Neurol.* 2015;14:485–496.
- Demchuk AM, Khan F, Hill MD, Barber PA, Silver B, Patel S, Levine SR; NINDS rt-PA Stroke Study Group. Importance of leukoaraiosis on CT for tissue plasminogen activator decision making: evaluation of the NINDS rt-PA Stroke Study. *Cerebrovasc Dis.* 2008;26:120–125. doi: 10.1159/000139658.
- Dzialowski I, Hill MD, Coutts SB, Demchuk AM, Kent DM, Wunderlich O, von Kummer R. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. *Stroke*. 2006;37:973– 978. doi: 10.1161/01.STR.0000206215.62441.56.
- Demchuk AM, Hill MD, Barber PA, Silver B, Patel SC, Levine SR; for the NINDS rtPA Stroke Study Group, NIH. Importance of early ischemic computed tomography changes using ASPECTS in NINDS rtPA Stroke Study. *Stroke*. 2005;36:2110–2115. doi: 10.1161/01.STR.0000181116.15426.58.

- 81. Patel SC, Levine SR, Tilley BC, Grotta JC, Lu M, Frankel M, Haley EC Jr, Brott TG, Broderick JP, Horowitz S, Lyden PD, Lewandowski CA, Marler JR, Welch KM; National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. *JAMA*. 2001;286:2830–2838.
- Charidimou A, Pasi M, Fiorelli M, Shams S, von Kummer R, Pantoni L, Rost N. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: a meta-analysis (v1). *Stroke*. 2016;47:2364–2372. doi: 10.1161/ STROKEAHA.116.014096.
- 83. Qureshi AI, Ezzeddine MA, Nasar A, Suri MF, Kirmani JF, Janjua N, Divani AA. Is IV tissue plasminogen activator beneficial in patients with hyperdense artery sign? *Neurology*. 2006;66:1171–1174. doi: 10.1212/01.wnl.0000208407.69544.5a.
- 84. Mair G, von Kummer R, Morris Z, von Heijne A, Bradey N, Cala L, Peeters A, Farrall AJ, Adami A, Potter G, Cohen G, Sandercock PA, Lindley RI, Wardlaw JM; IST-3 Collaborative Group. Effect of alteplase on the CT hyperdense artery sign and outcome after ischemic stroke. *Neurology*. 2016;86:118–125. doi: 10.1212/WNL.0000000002236.
- 85. Charidimou A, Shoamanesh A; International META-MICROBLEEDS Initiative. Clinical relevance of microbleeds in acute stroke thrombolysis: comprehensive meta-analysis. *Neurology*. 2016;87:1534–1541. doi: 10.1212/WNL.00000000003207.
- 86. Tsivgoulis G, Zand R, Katsanos AH, Turc G, Nolte CH, Jung S, Cordonnier C, Fiebach JB, Scheitz JF, Klinger-Gratz PP, Oppenheim C, Goyal N, Safouris A, Mattle HP, Alexandrov AW, Schellinger PD, Alexandrov AV. Risk of symptomatic intracerebral hemorrhage after intravenous thrombolysis in patients with acute ischemic stroke and high cerebral microbleed burden: a meta-analysis. *JAMA Neurol.* 2016;73:675–683. doi: 10.1001/jamaneurol.2016.0292.
- 87. Tissue plasminogen activator for acute ischemic stroke: the National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. *N Engl J Med.* 1995;333:1581–1587.
- 88. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP; DEFUSE Investigators. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. *Ann Neurol.* 2006;60:508–517. doi: 10.1002/ana.20976.
- Huang X, Cheripelli BK, Lloyd SM, Kalladka D, Moreton FC, Siddiqui A, Ford I, Muir KW. Alteplase Versus Tenecteplase for Thrombolysis After Ischaemic Stroke (ATTEST): a phase 2, randomised, open-label, blinded endpoint study. *Lancet Neurol.* 2015;14:368– 376. doi: 10.1016/S1474-4422(15)70017-7.
- 90. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:CD000213.
- 91. Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, O'Brien B, Bladin C, McElduff P, Allen C, Bateman G, Donnan G, Davis S, Levi C. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. *N Engl J Med.* 2012;366:1099–1107. doi: 10.1056/ NEJMoa1109842.
- 92. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Söhngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S. Intravenous desmoteplase in patients with

acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. *Lancet Neurol.* 2009;8:141–150. doi: 10.1016/S1474-4422(08)70267-9.

- 93. Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, Chalk JB, Fink JN, Kimber TE, Schultz D, Hand PJ, Frayne J, Hankey G, Muir K, Gerraty R, Tress BM, Desmond PM; EPITHET Investigators. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. *Lancet Neurol*. 2008;7:299–309. doi: 10.1016/S1474-4422(08)70044-9.
- 94. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA, Sachara C, Soehngen M, Warach S, Hacke W; for the DEDAS Investigators. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. *Stroke*. 2006;37:1227–1231. doi: 10.1161/01.STR. 0000217403.66996.6d.
- 95. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S; for the DIAS Study Group. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. *Stroke*. 2005;36:66–73. doi: 10.1161/01.STR.0000149938.08731.2c.
- 96. Ehrlich ME, Turner HL, Currie LJ, Wintermark M, Worrall BB, Southerland AM. Safety of computed tomographic angiography in the evaluation of patients with acute stroke: a single-center experience. *Stroke*. 2016;47:2045–2050. doi: 10.1161/STROKEAHA.116.013973.
- 97. Aulicky P, Mikulík R, Goldemund D, Reif M, Dufek M, Kubelka T. Safety of performing CT angiography in stroke patients treated with intravenous thrombolysis. *J Neurol Neurosurg Psychiatry*. 2010;81:783–787. doi: 10.1136/jnnp.2009.184002.
- 98. Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, González RG, Koroshetz WJ, Smith WS, Furie KL. Functional contrast-enhanced CT for evaluation of acute ischemic stroke does not increase the risk of contrast-induced nephropathy. *AJNR Am J Neuroradiol.* 2010;31:817–821. doi: 10.3174/ajnr.A1927.
- 99. Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI. Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. *AJNR Am J Neuroradiol.* 2008;29:1826–1830. doi: 10.3174/ajnr.A1257.
- 100. Krol AL, Dzialowski I, Roy J, Puetz V, Subramaniam S, Coutts SB, Demchuk AM. Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. *Stroke*. 2007;38:2364–2366. doi: 10.1161/STROKEAHA.107.482778.
- 101. Josephson SA, Dillon WP, Smith WS. Incidence of contrast nephropathy from cerebral CT angiography and CT perfusion imaging. *Neurology*. 2005;64:1805–1806. doi: 10.1212/01.WNL.0000161845.69114.62.
- 102. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, San Román L, Serena J, Abilleira S, Ribó M, Millán M, Urra X, Cardona P, López-Cancio E, Tomasello A, Castaño C, Blasco J, Aja L, Dorado L, Quesada H, Rubiera M, Hernandez-Pérez M, Goyal M, Demchuk AM, von Kummer R, Gallofré M, Dávalos A; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke. *N Engl J Med.* 2015;372:2296–2306. doi: 10.1056/NEJMoa1503780.
- 103. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, Albers GW, Cognard C, Cohen DJ, Hacke W, Jansen O, Jovin TG, Mattle HP, Nogueira RG, Siddiqui AH, Yavagal DR, Baxter BW, Devlin TG, Lopes DK, Reddy VK, du Mesnil de Rochemont R, Singer OC,

Jahan R; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. *N Engl J Med.* 2015;372:2285–2295. doi: 10.1056/NEJMoa1415061.

- 104. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. *N Engl J Med.* 2015;372:1019–1030. doi: 10.1056/NEJMoa1414905.
- 105. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, Wu TY, Brooks M, Simpson MA, Miteff F, Levi CR, Krause M, Harrington TJ, Faulder KC, Steinfort BS, Priglinger M, Ang T, Scroop R, Barber PA, McGuinness B, Wijeratne T, Phan TG, Chong W, Chandra RV, Bladin CF, Badve M, Rice H, de Villiers L, Ma H, Desmond PM, Donnan GA, Davis SM; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. *N Engl J Med.* 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792.
- 106. Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, Guillemin F; THRACE Investigators. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. *Lancet Neurol.* 2016;15:1138–1147. doi: 10.1016/S1474-4422(16)30177-6.
- 107. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, van Walderveen MA, Staals J, Hofmeijer J, van Oostayen JA, Lycklama à Nijeholt GJ, Boiten J, Brouwer PA, Emmer BJ, de Bruijn SF, van Dijk LC, Kappelle LJ, Lo RH, van Dijk EJ, de Vries J, de Kort PL, van Rooij WJ, van den Berg JS, van Hasselt BA, Aerden LA, Dallinga RJ, Visser MC, Bot JC, Vroomen PC, Eshghi O, Schreuder TH, Heijboer RJ, Keizer K, Tielbeek AV, den Hertog HM, Gerrits DG, van den Berg-Vos RM, Karas GB, Steyerberg EW, Flach HZ, Marquering HA, Sprengers ME, Jenniskens SF, Beenen LF, van den Berg R, Koudstaal PJ, van Zwam WH, Roos YB, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. *N Engl J Med.* 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
- 108. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, Sila CA, Hassan AE, Millan M, Levy EI, Mitchell P, Chen M, English JD, Shah QA, Silver FL, Pereira VM, Mehta BP, Baxter BW, Abraham MG, Cardona P, Veznedaroglu E, Hellinger FR, Feng L, Kirmani JF, Lopes DK, Jankowitz BT, Frankel MR, Costalat V, Vora NA, Yoo AJ, Malik AM, Furlan AJ, Rubiera M, Aghaebrahim A, Olivot JM, Tekle WG, Shields R, Graves T, Lewis RJ, Smith WS, Liebeskind DS, Saver JL, Jovin TG DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct [published online ahead of print November 11, 2017]. *N Engl J Med.* doi: 10.1056/NEJMoa1706442. http://www.nejm.org/doi/full/10.1056/NEJMoa1706442.
- 109. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart R, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, Sarraj A, Kasner SE, Ansari SA, Yeatts SD, Hamilton S, Mylnash M, Heit JJ, Zaharchuk G, Kim S, Carrozzella J, Palesch YY, Demchuk

AM, Bammer R, Lavori PW, Broderick JP, Lansberg MG; on behalf of the DEFUSE 3 Investigators. Thrombectomy for stroke with perfusion imaging selection at 6–16 hours. *N Engl J Med.* In press.

- 110. Berkhemer OA, Jansen IG, Beumer D, Fransen PS, van den Berg LA, Yoo AJ, Lingsma HF, Sprengers ME, Jenniskens SF, Lycklama À Nijeholt GJ, van Walderveen MA, van den Berg R, Bot JC, Beenen LF, Boers AM, Slump CH, Roos YB, van Oostenbrugge RJ, Dippel DW, van der Lugt A, van Zwam WH, Marquering HA, Majoie CB; on behalf of the MR CLEAN Investigators. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. *Stroke*. 2016;47:768–776. doi: 10.1161/STROKEAHA.115.011788.
- 111. Menon BK, Qazi E, Nambiar V, Foster LD, Yeatts SD, Liebeskind D, Jovin TG, Goyal M, Hill MD, Tomsick TA, Broderick JP, Demchuk AM; for the Interventional Management of Stroke III Investigators. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III Trial. *Stroke*. 2015;46:1239–1244. doi: 10.1161/STROKEAHA.115.009009.
- 112. Saber H, Silver B, Santillan A, Azarpazhooh MR, Misra V, Behrouz R. Role of emergent chest radiography in evaluation of hyperacute stroke. *Neurology*. 2016;87:782–785. doi: 10.1212/WNL.00000000002964.
- 113. Roffe C, Nevatte T, Sim J, Bishop J, Ives N, Ferdinand P, Gray R; Stroke Oxygen Study Investigators and the Stroke Oxygen Study Collaborative Group. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: the Stroke Oxygen Study Randomized Clinical Trial. *JAMA*. 2017;318:1125–1135. doi: 10.1001/jama.2017.11463.
- 114. Bennett MH, Weibel S, Wasiak J, Schnabel A, French C, Kranke P. Hyperbaric oxygen therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD004954.
- 115. Heyboer M 3rd, Sharma D, Santiago W, McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. *Adv Wound Care* (*New Rochelle*). 2017;6:210–224. doi: 10.1089/wound.2016.0718.
- 116. Heyboer M 3rd, Jennings S, Grant WD, Ojevwe C, Byrne J, Wojcik SM. Seizure incidence by treatment pressure in patients undergoing hyperbaric oxygen therapy. *Undersea Hyperb Med.* 2014;41:379–385.
- 117. Wohlfahrt P, Krajcoviechova A, Jozifova M, Mayer O, Vanek J, Filipovsky J, Cifkova R. Low blood pressure during the acute period of ischemic stroke is associated with decreased survival. *J Hypertens*. 2015;33:339–345. doi: 10.1097/HJH.00000000000414.
- 118. Vemmos KN, Tsivgoulis G, Spengos K, Zakopoulos N, Synetos A, Manios E, Konstantopoulou P, Mavrikakis M. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. *J Intern Med.* 2004;255:257–265.
- 119. Okumura K, Ohya Y, Maehara A, Wakugami K, Iseki K, Takishita S. Effects of blood pressure levels on case fatality after acute stroke. *J Hypertens*. 2005;23:1217–1223.
- Stead LG, Gilmore RM, Decker WW, Weaver AL, Brown RD Jr. Initial emergency department blood pressure as predictor of survival after acute ischemic stroke. *Neurology*. 2005;65:1179–1183. doi: 10.1212/01.wnl.0000180939.24845.22.
- 121. Castillo J, Leira R, García MM, Serena J, Blanco M, Dávalos A. Blood pressure decrease during the acute phase of ischemic stroke is associated with brain injury and poor stroke outcome. *Stroke*. 2004;35:520–526. doi: 10.1161/01.STR.0000109769.22917.B0.

- 122. Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA; for the IST Collaborative Group. Blood pressure and clinical outcomes in the International Stroke Trial. *Stroke*. 2002;33:1315–1320.
- 123. Manning LS, Mistri AK, Potter J, Rothwell PM, Robinson TG. Short-term blood pressure variability in acute stroke: post hoc analysis of the Controlling Hypertension and Hypotension Immediately Post Stroke and Continue or Stop Post-Stroke Antihypertensives collaborative study trials. *Stroke*. 2015;46:1518–1524. doi: 10.1161/STROKEAHA.115.009078.
- 124. Muscari A, Puddu GM, Serafini C, Fabbri E, Vizioli L, Zoli M. Predictors of short-term improvement of ischemic stroke. *Neurol Res.* 2013;35:594–601. doi: 10.1179/1743132813Y.0000000181.
- 125. Visvanathan A, Dennis M, Whiteley W. Parenteral fluid regimens for improving functional outcome in people with acute stroke. *Cochrane Database Syst Rev.* 2015:CD011138.
- 126. Butcher K, Christensen S, Parsons M, De Silva DA, Ebinger M, Levi C, Jeerakathil T, Campbell BC, Barber PA, Bladin C, Fink J, Tress B, Donnan GA, Davis SM; for the EPITHET Investigators. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. *Stroke.* 2010;41:72–77. doi: 10.1161/STROKEAHA.109.563767.
- 127. Perini F, De Boni A, Marcon M, Bolgan I, Pellizzari M, Dionisio LD. Systolic blood pressure contributes to intracerebral haemorrhage after thrombolysis for ischemic stroke. *J Neurol Sci.* 2010;297:52–54. doi: 10.1016/j.jns.2010.06.025.
- 128. Toni D, Ahmed N, Anzini A, Lorenzano S, Brozman M, Kaste M, Mikulik R, Putaala J, Wahlgren N; SITS Investigators. Intravenous thrombolysis in young stroke patients: results from the SITS-ISTR. *Neurology*. 2012;78:880–887. doi: 10.1212/WNL.0b013e31824d966b.
- 129. Mazya M, Egido JA, Ford GA, Lees KR, Mikulik R, Toni D, Wahlgren N, Ahmed N; for the SITS Investigators. Predicting the risk of symptomatic intracerebral hemorrhage in ischemic stroke treated with intravenous alteplase: safe Implementation of Treatments in Stroke (SITS) symptomatic intracerebral hemorrhage risk score. *Stroke*. 2012;43:1524–1531. doi: 10.1161/STROKEAHA.111.644815.
- 130. Wu W, Huo X, Zhao X, Liao X, Wang C, Pan Y, Wang Y, Wang Y; TIMS-CHINA Investigators. Relationship between blood pressure and outcomes in acute ischemic stroke patients administered lytic medication in the TIMS-China Study. *PLoS One*. 2016;11:e0144260. doi: 10.1371/journal.pone.0144260.
- 131. Endo K, Kario K, Koga M, Nakagawara J, Shiokawa Y, Yamagami H, Furui E, Kimura K, Hasegawa Y, Okada Y, Okuda S, Namekawa M, Miyagi T, Osaki M, Minematsu K, Toyoda K. Impact of early blood pressure variability on stroke outcomes after thrombolysis: the SAMURAI rt-PA Registry. *Stroke*. 2013;44:816–818. doi: 10.1161/STROKEAHA.112.681007.
- 132. Waltimo T, Haapaniemi E, Surakka IL, Melkas S, Sairanen T, Sibolt G, Tatlisumak T, Strbian D. Post-thrombolytic blood pressure and symptomatic intracerebral hemorrhage. *Eur J Neurol.* 2016;23:1757–1762. doi: 10.1111/ene.13118.
- 133. Liu K, Yan S, Zhang S, Guo Y, Lou M. Systolic blood pressure variability is associated with severe hemorrhagic transformation in the early stage after thrombolysis. *Transl Stroke Res.* 2016;7:186–191. doi: 10.1007/s12975-016-0458-6.
- 134. Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, Finfer S, Beasley R, Hyam J, Menon D, Rowan K, Myburgh J. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. *Intensive Care Med.* 2015;41:823–832. doi: 10.1007/s00134-015-3676-6.

- 135. Lyden P, Hemmen T, Grotta J, Rapp K, Ernstrom K, Rzesiewicz T, Parker S, Concha M, Hussain S, Agarwal S, Meyer B, Jurf J, Altafullah I, Raman R. Results of the ICTuS 2 Trial (Intravascular Cooling in the Treatment of Stroke 2). *Stroke*. 2016;47:2888–2895. doi: 10.1161/ STROKEAHA.116.014200.
- 136. Geurts M, Petersson J, Brizzi M, Olsson-Hau S, Luijckx GJ, Algra A, Dippel DW, Kappelle LJ, van der Worp HB. COOLIST (Cooling for Ischemic Stroke Trial): a multicenter, open, randomized, phase ii, clinical trial. *Stroke*. 2017;48:219–221. doi: 10.1161/ STROKEAHA.116.014757.
- 137. Piironen K, Tiainen M, Mustanoja S, Kaukonen KM, Meretoja A, Tatlisumak T, Kaste M. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: a randomized controlled trial. *Stroke*. 2014;45:486–491. doi: 10.1161/STROKEAHA.113.003180.
- 138. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD; for the ICTuS-L Investigators. Intravenous Thrombolysis Plus Hypothermia for Acute Treatment of Ischemic Stroke (ICTuS-L): final results. *Stroke*. 2010;41:2265–2270. doi: 10.1161/STROKEAHA.110.592295.
- 139. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S; ATLANTIS Trials Investigators; ECASS Trials Investigators; NINDS rt-PA Study Group Investigators. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. *Lancet.* 2004;363:768–774. doi: 10.1016/S0140-6736(04)15692-4.
- 140. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. *Lancet.* 2012;379:2364–2372. doi: 10.1016/S0140-6736(12)60738-7.
- 141. Wahlgren N, Ahmed N, Dávalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, Lees KR, Roine RO, Soinne L, Toni D, Vanhooren G; SITS-MOST investigators. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. *Lancet.* 2007;369:275–282. doi: 10.1016/S0140-6736(07)60149-4.
- 142. IST-3 Collaborative Group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, Murray G, Innes K, Venables G, Czlonkowska A, Kobayashi A, Ricci S, Murray V, Berge E, Slot KB, Hankey GJ, Correia M, Peeters A, Matz K, Lyrer P, Gubitz G, Phillips SJ, Arauz A. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the Third International Stroke Trial [IST-3]): a randomised controlled trial. *Lancet.* 2012;379:2352–2363.
- 143. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, Broderick JP, Chen X, Chen G, Sharma VK, Kim JS, Thang NH, Cao Y, Parsons MW, Levi C, Huang Y, Olavarría VV, Demchuk AM, Bath PM, Donnan GA, Martins S, Pontes-Neto OM, Silva F, Ricci S, Roffe C, Pandian J, Billot L, Woodward M, Li Q, Wang X, Wang J, Chalmers J; ENCHANTED Investigators and Coordinators. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. *N Engl J Med.* 2016;374:2313–2323. doi: 10.1056/NEJMoa1515510.

- 144. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D; ECASS Investigators. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–1329. doi: 10.1056/NEJMoa0804656.
- 145. Bluhmki E, Chamorro A, Dávalos A, Machnig T, Sauce C, Wahlgren N, Wardlaw J, Hacke W. Stroke treatment with alteplase given 3.0-4.5 h after onset of acute ischaemic stroke (ECASS III): additional outcomes and subgroup analysis of a randomised controlled trial. *Lancet Neurol.* 2009;8:1095–1102. doi: 10.1016/S1474-4422(09)70264-9.
- 146. Ahmed N, Wahlgren N, Grond M, Hennerici M, Lees KR, Mikulik R, Parsons M, Roine RO, Toni D, Ringleb P; SITS Investigators. Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: an updated analysis from SITS-ISTR. *Lancet Neurol.* 2010;9:866–874. doi: 10.1016/S1474-4422(10)70165-4.
- 147. Romano JG, Smith EE, Liang L, Gardener H, Camp S, Shuey L, Cook A, Campo-Bustillo I, Khatri P, Bhatt DL, Fonarow GC, Sacco RL, Schwamm LH. Outcomes in mild acute ischemic stroke treated with intravenous thrombolysis: a retrospective analysis of the Get With the Guidelines-Stroke registry. *JAMA Neurol.* 2015;72:423–431. doi: 10.1001/jamaneurol.2014.4354.
- 148. Adams RJ, Cox M, Ozark SD, Kanter J, Schulte PJ, Xian Y, Fonarow GC, Smith EE, Schwamm LH. Coexistent sickle cell disease has no impact on the safety or outcome of lytic therapy in acute ischemic stroke: findings from Get With The Guidelines–Stroke. *Stroke*. 2017;48:686–691. doi: 10.1161/STROKEAHA.116.015412.
- 149. Sloan MA, Price TR, Petito CK, Randall AM, Solomon RE, Terrin ML, Gore J, Collen D, Kleiman N, Feit F. Clinical features and pathogenesis of intracerebral hemorrhage after rt-PA and heparin therapy for acute myocardial infarction: the Thrombolysis in Myocardial Infarction (TIMI) II Pilot and Randomized Clinical Trial combined experience. *Neurology*. 1995;45:649–658.
- 150. Mahaffey KW, Granger CB, Sloan MA, Green CL, Gore JM, Weaver WD, White HD, Simoons ML, Barbash GI, Topol EJ, Califf RM. Neurosurgical evacuation of intracranial hemorrhage after thrombolytic therapy for acute myocardial infarction: experience from the GUSTO-I trial: Global Utilization of Streptokinase and Tissue-Plasminogen Activator (tPA) for Occluded Coronary Arteries. *Am Heart J*. 1999;138(pt 1):493–499.
- 151. Goldstein JN, Marrero M, Masrur S, Pervez M, Barrocas AM, Abdullah A, Oleinik A, Rosand J, Smith EE, Dzik WH, Schwamm LH. Management of thrombolysis-associated symptomatic intracerebral hemorrhage. *Arch Neurol.* 2010;67:965–969. doi: 10.1001/ archneurol.2010.175.
- 152. French KF, White J, Hoesch RE. Treatment of intracerebral hemorrhage with tranexamic acid after thrombolysis with tissue plasminogen activator. *Neurocrit Care*. 2012;17:107–111. doi: 10.1007/s12028-012-9681-5.
- 153. Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. *JAMA Neurol.* 2014;71:1181–1185. doi: 10.1001/jamaneurol.2014.1210.
- 154. Yaghi S, Haggiagi A, Sherzai A, Marshall RS, Agarwal S. Use of recombinant factor VIIa in symptomatic intracerebral hemorrhage following intravenous thrombolysis. *Clin Pract.* 2015;5:756. doi: 10.4081/cp.2015.756.

- 155. Yaghi S, Boehme AK, Dibu J, Leon Guerrero CR, Ali S, Martin-Schild S, Sands KA, Noorian AR, Blum CA, Chaudhary S, Schwamm LH, Liebeskind DS, Marshall RS, Willey JZ. Treatment and outcome of thrombolysis-related hemorrhage: a multicenter retrospective study. *JAMA Neurol.* 2015;72:1451–1457. doi: 10.1001/jamaneurol.2015.2371.
- 156. Stone JA, Willey JZ, Keyrouz S, Butera J, McTaggart RA, Cutting S, Silver B, Thompson B, Furie KL, Yaghi S. Therapies for hemorrhagic transformation in acute ischemic stroke. *Curr Treat Options Neurol.* 2017;19:1. doi: 10.1007/s11940-017-0438-5.
- 157. Frontera JA, Lewin JJ 3rd, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, del Zoppo GJ, Kumar MA, Peerschke EI, Stiefel MF, Teitelbaum JS, Wartenberg KE, Zerfoss CL. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for health-care professionals from the Neurocritical Care Society and Society of Critical Care Medicine. *Neurocrit Care*. 2016;24:6–46. doi: 10.1007/s12028-015-0222-x.
- 158. Foster-Goldman A, McCarthy D. Angioedema from recombinant TPA administration: case report and pathophysiology review. *Am J Ther*. 2013;20:691–693. doi: 10.1097/MJT.0b013e3182799083.
- 159. Gorski EM, Schmidt MJ. Orolingual angioedema with alteplase administration for treatment of acute ischemic stroke. *J Emerg Med*. 2013;45:e25–e26. doi: 10.1016/j.jemermed.2013.02.004.
- 160. Lewis LM. Angioedema: etiology, pathophysiology, current and emerging therapies. *J Emerg Med.* 2013;45:789–796. doi: 10.1016/j. jemermed.2013.03.045.
- 161. Lin SY, Tang SC, Tsai LK, Yeh SJ, Hsiao YJ, Chen YW, Chen KH, Yip BS, Shen LJ, Wu FL, Jeng JS. Orolingual angioedema after alteplase therapy of acute ischaemic stroke: incidence and risk of prior angiotensin-converting enzyme inhibitor use. *Eur J Neurol.* 2014;21:1285–1291. doi: 10.1111/ene.12472.
- 162. Correia AS, Matias G, Calado S, Lourenço A, Viana-Baptista M. Orolingual angiodema associated with alteplase treatment of acute stroke: a reappraisal. *J Stroke Cerebrovasc Dis.* 2015;24:31–40. doi: 10.1016/j.jstrokecerebrovasdis.2014.07.045.
- 163. O'Carroll CB, Aguilar MI. Management of postthrombolysis hemorrhagic and orolingual angioedema complications. *Neurohospitalist*. 2015;5:133–141. doi: 10.1177/1941874415587680.
- 164. Myslimi F, Caparros F, Dequatre-Ponchelle N, Moulin S, Gautier S, Girardie P, Cordonnier C, Bordet R, Leys D. Orolingual angioedema during or after thrombolysis for cerebral ischemia. *Stroke*. 2016;47:1825–1830. doi: 10.1161/STROKEAHA.116.013334.
- 165. Pahs L, Droege C, Kneale H, Pancioli A. A novel approach to the treatment of orolingual angioedema after tissue plasminogen activator administration. *Ann Emerg Med.* 2016;68:345–348. doi: 10.1016/j.annemergmed.2016.02.019.
- 166. Jeong HG, Kim BJ, Yang MH, Han MK, Bae HJ, Lee SH. Stroke outcomes with use of antithrombotics within 24 hours after recanalization treatment. *Neurology*. 2016;87:996–1002. doi: 10.1212/WNL. 00000000003083.
- 167. von Kummer R, Mori E, Truelsen T, Jensen JS, Grønning BA, Fiebach JB, Lovblad KO, Pedraza S, Romero JM, Chabriat H, Chang KC, Dávalos A, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A, Albers GW; for the DIAS-4 Investigators. Desmoteplase 3 to 9 hours after major artery occlusion stroke: the DIAS-4 Trial (Efficacy and Safety Study of Desmoteplase to Treat Acute Ischemic Stroke). *Stroke*. 2016;47:2880–2887. doi: 10.1161/STROKEAHA.116.013715.

- 168. Albers GW, von Kummer R, Truelsen T, Jensen JK, Ravn GM, Grønning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, Grotta J, Kaste M, Schwamm LH, Shuaib A; DIAS-3 Investigators. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. *Lancet Neurol.* 2015;14:575–584. doi: 10.1016/S1474-4422(15)00047-2.
- 169. Haley EC Jr, Thompson JL, Grotta JC, Lyden PD, Hemmen TG, Brown DL, Fanale C, Libman R, Kwiatkowski TG, Llinas RH, Levine SR, Johnston KC, Buchsbaum R, Levy G, Levin B; for the Tenecteplase in Stroke Investigators. Phase IIB/III trial of tenecteplase in acute ischemic stroke: results of a prematurely terminated randomized clinical trial. *Stroke*. 2010;41:707–711. doi: 10.1161/STROKEAHA. 109.572040.
- 170. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, Thommessen B, Amthor KF, Ihle-Hansen H, Kurz M, Tobro H, Kaur K, Stankiewicz M, Carlsson M, Morsund Å, Idicula T, Aamodt AH, Lund C, Næss H, Waje-Andreassen U, Thomassen L. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. *Lancet Neurol.* 2017;16:781–788. doi: 10.1016/S1474-4422(17)30253-3.
- 171. Nacu A, Kvistad CE, Naess H, Øygarden H, Logallo N, Assmus J, Waje-Andreassen U, Kurz KD, Neckelmann G, Thomassen L. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): randomized controlled contrast-enhanced sonothrombolysis in an unselected acute ischemic stroke population. *Stroke*. 2017;48:335–341. doi: 10.1161/STROKEAHA.116.014644.
- 172. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES Collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. *Lancet*. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X.
- 173. Campbell BC, Hill MD, Rubiera M, Menon BK, Demchuk A, Donnan GA, Roy D, Thornton J, Dorado L, Bonafe A, Levy EI, Diener HC, Hernández-Pérez M, Pereira VM, Blasco J, Quesada H, Rempel J, Jahan R, Davis SM, Stouch BC, Mitchell PJ, Jovin TG, Saver JL, Goyal M. Safety and efficacy of solitaire stent thrombectomy: individual patient data meta-analysis of randomized trials. *Stroke*. 2016;47:798–806. doi: 10.1161/STROKEAHA.115.012360.
- 174. Bush CK, Kurimella D, Cross LJ, Conner KR, Martin-Schild S, He J, Li C, Chen J, Kelly T. Endovascular treatment with stent-retriever devices for acute ischemic stroke: a meta-analysis of randomized controlled trials. *PLoS One*. 2016;11:e0147287. doi: 10.1371/journal.pone.0147287.
- 175. Lemmens R, Hamilton SA, Liebeskind DS, Tomsick TA, Demchuk AM, Nogueira RG, Marks MP, Jahan R, Gralla J, Yoo AJ, Yeatts SD, Palesch YY, Saver JL, Pereira VM, Broderick JP, Albers GW, Lansberg MG; DEFUSE 2, IMS III, STAR, and SWIFT Trialists; DEFUSE 2 IMS III STAR and SWIFT Trialists. Effect of endovascular reperfusion in relation to site of arterial occlusion. *Neurology*. 2016;86:762–770. doi: 10.1212/WNL.00000000002399.

- 176. Yoo AJ, Simonsen CZ, Prabhakaran S, Chaudhry ZA, Issa MA, Fugate JE, Linfante I, Liebeskind DS, Khatri P, Jovin TG, Kallmes DF, Dabus G, Zaidat OO; for the Cerebral Angiographic Revascularization Grading Collaborators. Refining angiographic biomarkers of revascularization: improving outcome prediction after intra-arterial therapy. *Stroke*. 2013;44:2509–2512. doi: 10.1161/STROKEAHA.113.001990.
- 177. Marks MP, Lansberg MG, Mlynash M, Kemp S, McTaggart R, Zaharchuk G, Bammer R, Albers GW; DEFUSE 2 Investigators. Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome. *J Neurointerv Surg.* 2014;6:724– 728. doi: 10.1136/neurintsurg-2013-010973.
- 178. Lapergue B, Blanc R, Gory B, Labreuche J, Duhamel A, Marnat G, Saleme S, Costalat V, Bracard S, Desal H, Mazighi M, Consoli A, Piotin M; ASTER Trial Investigators. Effect of endovascular contact aspiration vs stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: the ASTER randomized clinical trial. *JAMA*. 2017;318:443–452. doi: 10.1001/jama.2017.9644.
- 179. Dippel DW, Majoie CB, Roos YB, van der Lugt A, van Oostenbrugge RJ, van Zwam WH, Lingsma HF, Koudstaal PJ, Treurniet KM, van den Berg LA, Beumer D, Fransen PS, Berkhemer OA; for the MR CLEAN Investigators. Influence of device choice on the effect of intraarterial treatment for acute ischemic stroke in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands). *Stroke*. 2016;47:2574–2581. doi: 10.1161/STROKEAHA.116.013929.
- 180. Berkhemer OA, van den Berg LA, Fransen PS, Beumer D, Yoo AJ, Lingsma HF, Schonewille WJ, van den Berg R, Wermer MJ, Boiten J, Lycklama À Nijeholt GJ, Nederkoorn PJ, Hollmann MW, van Zwam WH, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW, Roos YB; MR CLEAN Investigators. The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN. *Neurology*. 2016;87:656–664. doi: 10.1212/WNL.00000000002976.
- 181. Löwhagen Hendén P, Rentzos A, Karlsson JE, Rosengren L, Leiram B, Sundeman H, Dunker D, Schnabel K, Wikholm G, Hellström M, Ricksten SE. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (Anesthesia During Stroke). *Stroke*. 2017;48:1601–1607. doi: 10.1161/STROKEAHA.117.016554.
- 182. Schönenberger S, Uhlmann L, Hacke W, Schieber S, Mundiyanapurath S, Purrucker JC, Nagel S, Klose C, Pfaff J, Bendszus M, Ringleb PA, Kieser M, Möhlenbruch MA, Bösel J. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy: a randomized clinical trial. *JAMA*. 2016;316:1986–1996. doi: 10.1001/jama.2016.16623.
- 183. Jovin TG, Saver JL, Ribo M, Pereira V, Furlan A, Bonafe A, Baxter B, Gupta R, Lopes D, Jansen O, Smith W, Gress D, Hetts S, Lewis RJ, Shields R, Berry SM, Graves TL, Malisch T, Rai A, Sheth KN, Liebeskind DS, Nogueira RG. Diffusion-weighted imaging or computer-ized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neuro-intervention with Trevo (DAWN) trial methods. *Int J Stroke*. 2017;12:641–652. doi: 10.1177/1747493017710341.
- 184. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke: International Stroke Trial Collaborative Group. *Lancet*. 1997;349:1569–1581.

- 185. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke: CAST (Chinese Acute Stroke Trial) Collaborative Group. *Lancet.* 1997;349:1641–1649.
- 186. Sandercock PA, Counsell C, Tseng MC, Cecconi E. Oral antiplatelet therapy for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD000029.
- 187. Siebler M, Hennerici MG, Schneider D, von Reutern GM, Seitz RJ, Röther J, Witte OW, Hamann G, Junghans U, Villringer A, Fiebach JB. Safety of Tirofiban in acute Ischemic Stroke: the SaTIS trial. *Stroke*. 2011;42:2388–2392. doi: 10.1161/STROKEAHA.110.599662.
- 188. Pancioli AM, Broderick J, Brott T, Tomsick T, Khoury J, Bean J, del Zoppo G, Kleindorfer D, Woo D, Khatri P, Castaldo J, Frey J, Gebel J Jr, Kasner S, Kidwell C, Kwiatkowski T, Libman R, Mackenzie R, Scott P, Starkman S, Thurman RJ; for the CLEAR Trial Investigators. The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: the CLEAR stroke trial. *Stroke*. 2008;39:3268–3276. doi: 10.1161/STROKEAHA.108.517656.
- 189. Adeoye O, Sucharew H, Khoury J, Tomsick T, Khatri P, Palesch Y, Schmit PA, Pancioli AM, Broderick JP; for the CLEAR-ER, IMS III, and ALIAS Part 2 Investigators. Recombinant tissue-type plasminogen activator plus eptifibatide versus recombinant tissue-type plasminogen activator alone in acute ischemic stroke: propensity score-matched post hoc analysis. *Stroke*. 2015;46:461–464. doi: 10.1161/STROKEAHA.114.006743.
- 190. Adeoye O, Sucharew H, Khoury J, Vagal A, Schmit PA, Ewing I, Levine SR, Demel S, Eckerle B, Katz B, Kleindorfer D, Stettler B, Woo D, Khatri P, Broderick JP, Pancioli AM. Combined approach to lysis utilizing eptifibatide and recombinant tissue-type plasminogen activator in acute ischemic stroke-full dose regimen stroke trial. *Stroke*. 2015;46:2529–2533. doi: 10.1161/STROKEAHA.115.010260.
- 191. Ciccone A, Motto C, Abraha I, Cozzolino F, Santilli I. Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke. *Cochrane Database Syst Rev.* 2014:CD005208.
- 192. Adams HP Jr, Effron MB, Torner J, Dávalos A, Frayne J, Teal P, Leclerc J, Oemar B, Padgett L, Barnathan ES, Hacke W; for the AbESTT-II Investigators. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). *Stroke*. 2008;39:87–99. doi: 10.1161/STROKEAHA. 106.476648.
- 193. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, Wang C, Li H, Meng X, Cui L, Jia J, Dong Q, Xu A, Zeng J, Li Y, Wang Z, Xia H, Johnston SC; CHANCE Investigators. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. *N Engl J Med*. 2013;369:11–19. doi: 10.1056/NEJMoa1215340.
- 194. Wang Y, Pan Y, Zhao X, Li H, Wang D, Johnston SC, Liu L, Meng X, Wang A, Wang C, Wang Y; on behalf of the CHANCE Investigators. Clopidogrel With Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) trial: one-year outcomes. *Circulation*. 2015;132:40–46. doi: 10.1161/CIRCULATIONAHA.114.014791.
- 195. Johnston SC, Easton JD, Farrant M, Barsan W, Battenhouse H, Conwit R, Dillon C, Elm J, Lindblad A, Morgenstern L, Poisson SN, Palesch Y. Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT) trial: rationale and design. *Int J Stroke*. 2013;8:479–483. doi: 10.1111/ijs.12129.

- 196. Johnston SC, Amarenco P. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. *N Engl J Med.* 2016;375:1395. doi: 10.1056/NEJMc1610106.
- 197. Whiteley WN, Adams HP Jr, Bath PM, Berge E, Sandset PM, Dennis M, Murray GD, Wong KS, Sandercock PA. Targeted use of heparin, heparinoids, or low-molecular-weight heparin to improve outcome after acute ischaemic stroke: an individual patient data meta-analysis of randomised controlled trials. *Lancet Neurol.* 2013;12:539–545. doi: 10.1016/S1474-4422(13)70079-6.
- 198. Sandercock PA, Counsell C, Kane EJ. Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev. 2015:CD000024.
- 199. Yi X, Lin J, Wang C, Zhang B, Chi W. Low-molecular-weight heparin is more effective than aspirin in preventing early neurologic deterioration and improving six-month outcome. *J Stroke Cerebrovasc Dis.* 2014;23:1537–1544. doi: 10.1016/j.jstrokecerebrovasdis. 2013.12.036.
- 200. Wada T, Yasunaga H, Horiguchi H, Matsubara T, Fushimi K, Nakajima S, Yahagi N. Outcomes of argatroban treatment in patients with atherothrombotic stroke: observational nationwide study in Japan. *Stroke*. 2016;47:471–476. doi: 10.1161/STROKEAHA.115.011250.
- 201. Kate M, Gioia L, Buck B, Sivakumar L, Jeerakathil T, Shuaib A, Butcher K. Dabigatran therapy in acute ischemic stroke patients without atrial fibrillation. *Stroke*. 2015;46:2685–2687. doi: 10.1161/STROKEAHA.115.010383.
- 202. Paciaroni M, Agnelli G, Falocci N, Caso V, Becattini C, Marcheselli S, Rueckert C, Pezzini A, Poli L, Padovani A, Csiba L, Szabó L, Sohn SI, Tassinari T, Abdul-Rahim AH, Michel P, Cordier M, Vanacker P, Remillard S, Alberti A, Venti M, Scoditti U, Denti L, Orlandi G, Chiti A, Gialdini G, Bovi P, Carletti M, Rigatelli A, Putaala J, Tatlisumak T, Masotti L, Lorenzini G, Tassi R, Guideri F, Martini G, Tsivgoulis G, Vadikolias K, Liantinioti C, Corea F, Del Sette M, Ageno W, De Lodovici ML, Bono G, Baldi A, D'Anna S, Sacco S, Carolei A, Tiseo C, Acciarresi M, D'Amore C, Imberti D, Zabzuni D, Doronin B, Volodina V, Consoli D, Galati F, Pieroni A, Toni D, Monaco S, Baronello MM, Barlinn K, Pallesen LP, Kepplinger J, Bodechtel U, Gerber J, Deleu D, Melikyan G, Ibrahim F, Akhtar N, Mosconi MG, Bubba V, Silvestri I, Lees KR. Early recurrence and cerebral bleeding in patients with acute ischemic stroke and atrial fibrillation: effect of anticoagulation and its timing: the RAF study. *Stroke*. 2015;46:2175–2182. doi: 10.1161/STROKEAHA.115.008891.
- 203. Mokin M, Kass-Hout T, Kass-Hout O, Radovic V, Siddiqui AH, Levy EI, Snyder KV. Intravenous heparin for the treatment of intraluminal thrombus in patients with acute ischemic stroke: a case series. *J Neurointerv Surg.* 2013;5:144–150. doi: 10.1136/neurintsurg-2011-010134.
- 204. Vellimana AK, Kadkhodayan Y, Rich KM, Cross DT 3rd, Moran CJ, Zazulia AR, Lee JM, Chicoine MR, Dacey RG Jr, Derdeyn CP, Zipfel GJ. Symptomatic patients with intraluminal carotid artery thrombus: outcome with a strategy of initial anticoagulation. *J Neurosurg*. 2013;118:34–41. doi: 10.3171/2012.9.JNS12406.
- 205. Barreto AD, Alexandrov AV, Lyden P, Lee J, Martin-Schild S, Shen L, Wu TC, Sisson A, Pandurengan R, Chen Z, Rahbar MH, Balucani C, Barlinn K, Sugg RM, Garami Z, Tsivgoulis G, Gonzales NR, Savitz SI, Mikulik R, Demchuk AM, Grotta JC. The Argatroban and Tissue-Type Plasminogen Activator Stroke Study: final results of a pilot safety study. *Stroke*. 2012;43:770–775. doi: 10.1161/STROKEAHA.111.625574.

- 206. Barreto AD, Ford GA, Shen L, Pedroza C, Tyson J, Cai C, Rahbar MH, Grotta JC; on behalf of the ARTSS-2 Investigators. Randomized, multicenter trial of ARTSS-2 (Argatroban With Recombinant Tissue Plasminogen Activator for Acute Stroke). *Stroke*. 2017;48:1608–1616. doi: 10.1161/STROKEAHA.117.016720.
- 207. Gioia LC, Kate M, Sivakumar L, Hussain D, Kalashyan H, Buck B, Bussiere M, Jeerakathil T, Shuaib A, Emery D, Butcher K. Early rivaroxaban use after cardioembolic stroke may not result in hemorrhagic transformation: a prospective magnetic resonance imaging study. *Stroke*. 2016;47:1917–1919. doi: 10.1161/STROKEAHA.116.013491.
- 208. Chang TS, Jensen MB. Haemodilution for acute ischaemic stroke. Cochrane Database Syst Rev. 2014:CD000103.
- 209. Ginsberg MD, Palesch YY, Hill MD, Martin RH, Moy CS, Barsan WG, Waldman BD, Tamariz D, Ryckborst KJ; ALIAS and Neurological Emergencies Treatment Trials (NETT) Investigators. High-dose albumin treatment for acute ischaemic stroke (ALIAS) part 2: a randomised, double-blind, phase 3, placebo-controlled trial. *Lancet Neurol.* 2013;12:1049–1058. doi: 10.1016/S1474-4422(13)70223-0.
- 210. Martin RH, Yeatts SD, Hill MD, Moy CS, Ginsberg MD, Palesch YY; for the ALIAS Parts 1 and 2 and NETT Investigators. ALIAS (Albumin in Acute Ischemic Stroke) trials: analysis of the combined data from parts 1 and 2. *Stroke*. 2016;47:2355–2359. doi: 10.1161/STROKEAHA.116.012825.
- 211. Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. *Ann Med.* 2010;42:576–586. doi: 10.3109/07853890.2010.532811.
- 212. Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. *Curr Cardiol Rep.* 2010;12:29–33. doi: 10.1007/s11886-009-0071-3.
- 213. Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, Kasner S, Lew R, Nash M, Perez J, Rymer M, Schellinger P, Schneider D, Schwab S, Veltkamp R, Walker M, Streeter J; for the NeuroThera Effectiveness and Safety Trial-2 Investigators. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. *Stroke*. 2009;40:1359–1364. doi: 10.1161/STROKEAHA.109.547547.
- 214. Hacke W, Schelinger PD, Albers GW, Bornstein NM, Dahlof BS, Kasner SE, Howard G, Shuaib A, Richieri SP, Dilly S, Zivin J. Transcranial laser therapy (TLT) for acute ischemic stroke: results of NEST 3, a pivotal phase III randomized clinical trial (RCT). *Cerebrovasc Dis.* 2013;35:191.
- 215. Stead LG, Gilmore RM, Vedula KC, Weaver AL, Decker WW, Brown RD Jr. Impact of acute blood pressure variability on ischemic stroke outcome. *Neurology*. 2006;66:1878–1881. doi: 10.1212/01.wnl.0000219628.78513.b5.
- 216. Kaste M, Fogelholm R, Erilä T, Palomäki H, Murros K, Rissanen A, Sarna S. A randomized, double-blind, placebo-controlled trial of nimodipine in acute ischemic hemispheric stroke. *Stroke*. 1994;25:1348–1353.
- 217. Wahlgren NG, MacMahon DG, De Keyser J, Indredavik B, Ryman T. The Intravenous Nimodipine West European Trial (INWEST) of nimodipine in the treatment of acute ischemic stroke. *Cerebrovasc Dis.* 1994;4:204–210.
- 218. Horn J, de Haan RJ, Vermeulen M, Limburg M. Very Early Nimodipine Use in Stroke (VENUS): a randomized, double-blind, placebocontrolled trial. *Stroke*. 2001;32:461–465.

- 219. Schrader J, Lüders S, Kulschewski A, Berger J, Zidek W, Treib J, Einhäupl K, Diener HC, Dominiak P; on behalf of the Acute Candesartan Cilexetil Therapy in Stroke Survivors Study Group. The ACCESS Study: evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors. *Stroke*. 2003;34:1699–1703. doi: 10.1161/01.STR.0000075777.18006.89.
- 220. Eveson DJ, Robinson TG, Potter JF. Lisinopril for the treatment of hypertension within the first 24 hours of acute ischemic stroke and follow-up. *Am J Hypertens*. 2007;20:270–277. doi: 10.1016/j.amjhyper.2006.08.005.
- 221. Bath PM, Martin RH, Palesch Y, Cotton D, Yusuf S, Sacco R, Diener HC, Toni D, Estol C, Roberts R; for the PRoFESS Study Group. Effect of telmisartan on functional outcome, recurrence, and blood pressure in patients with acute mild ischemic stroke: a PRoFESS subgroup analysis. *Stroke*. 2009;40:3541–3546. doi: 10.1161/STROKEAHA.109.555623.
- 222. Potter JF, Robinson TG, Ford GA, Mistri A, James M, Chernova J, Jagger C. Controlling Hypertension and Hypotension Immediately Post-Stroke (CHHIPS): a randomised, placebo-controlled, double-blind pilot trial. *Lancet Neurol.* 2009;8:48–56. doi: 10.1016/S1474-4422(08)70263-1.
- 223. Robinson TG, Potter JF, Ford GA, Bulpitt CJ, Chernova J, Jagger C, James MA, Knight J, Markus HS, Mistri AK, Poulter NR; COSSACS Investigators. Effects of antihypertensive treatment after acute stroke in the Continue or Stop Post-Stroke Antihypertensives Collaborative Study (COSSACS): a prospective, randomised, open, blinded-endpoint trial. *Lancet Neurol.* 2010;9:767–775. doi: 10.1016/S1474-4422(10)70163-0.
- 224. Sandset EC, Bath PM, Boysen G, Jatuzis D, Kõrv J, Lüders S, Murray GD, Richter PS, Roine RO, Terént A, Thijs V, Berge E; SCAST Study Group. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. *Lancet*. 2011;377:741–750. doi: 10.1016/S0140-6736(11)60104-9.
- 225. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, Tong W, Liu C, Xu T, Ju Z, Peng Y, Peng H, Li Q, Geng D, Zhang J, Li D, Zhang F, Guo L, Sun Y, Wang X, Cui Y, Li Y, Ma D, Yang G, Gao Y, Yuan X, Bazzano LA, Chen J; CATIS Investigators. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. *JAMA*. 2014;311:479–489. doi: 10.1001/jama.2013.282543.
- 226. Bath PM, Krishnan K. Interventions for deliberately altering blood pressure in acute stroke. Cochrane Database Syst Rev. 2014:CD000039.
- 227. Oh MS, Yu KH, Hong KS, Kang DW, Park JM, Bae HJ, Koo J, Lee J, Lee BC; Valsartan Efficacy oN modesT blood pressUre REduction in acute ischemic stroke (VENTURE) Study Group. Modest blood pressure reduction with valsartan in acute ischemic stroke: a prospective, randomized, open-label, blinded-end-point trial. *Int J Stroke*. 2015;10:745–751. doi: 10.1111/ijs.12446.
- 228. Enos Trial Investigators, Bath PM, Woodhouse L, Scutt P, Krishnan K, Wardlaw JM, Bereczki D, Sprigg N, Berge E, Beridze M, Caso V, Chen C, Christensen H, Collins R, El Etribi A, Laska AC, Lees KR, Ozturk S, Phillips S, Pocock S, de Silva HA, Szatmari S, Utton S. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. *Lancet.* 2015;385:617–28.
- 229. Lee M, Ovbiagele B, Hong KS, Wu YL, Lee JE, Rao NM, Feng W, Saver JL. Effect of blood pressure lowering in early ischemic stroke: meta-analysis. *Stroke*. 2015;46:1883–1889. doi: 10.1161/STROKEAHA.115.009552.

230. - 234. Deleted

- 235. Dennis M, Lewis S, Cranswick G, Forbes J; FOOD Trial Collaboration. FOOD: a multicentre randomised trial evaluating feeding policies in patients admitted to hospital with a recent stroke. *Health Technol Assess.* 2006;10:iii–iv, ix.
- 236. Geeganage C, Beavan J, Ellender S, Bath PM. Interventions for dysphagia and nutritional support in acute and subacute stroke. *Cochrane Database Syst Rev.* 2012;10:CD000323. doi: 10.1002/14651858.CD000323.pub2.
- 237. Sørensen RT, Rasmussen RS, Overgaard K, Lerche A, Johansen AM, Lindhardt T. Dysphagia screening and intensified oral hygiene reduce pneumonia after stroke. *J Neurosci Nurs*. 2013;45:139–146. doi: 10.1097/JNN.0b013e31828a412c.
- 238. Brady M, Furlanetto D, Hunter RV, Lewis S, Milne V. Staff-led interventions for improving oral hygiene in patients following stroke. *Cochrane Database Syst Rev.* 2006:CD003864.
- 239. Wagner C, Marchina S, Deveau JA, Frayne C, Sulmonte K, Kumar S. Risk of stroke-associated pneumonia and oral hygiene. *Cerebrovasc Dis.* 2016;41:35–39. doi: 10.1159/000440733.
- 240. Dennis M, Caso V, Kappelle LJ, Pavlovic A, Sandercock P. European Stroke Organisation (ESO) guidelines for prophylaxis for venous thromboembolism in immobile patients with acute ischaemic stroke. *Eur Stroke J*. 2016;1:6–19.
- 241. Meader N, Moe-Byrne T, Llewellyn A, Mitchell AJ. Screening for post-stroke major depression: a meta-analysis of diagnostic validity studies. *J Neurol Neurosurg Psychiatry*. 2014;85:198–206. doi: 10.1136/jnnp-2012-304194.
- 242. Towfighi A, Ovbiagele B, El Husseini N, Hackett ML, Jorge RE, Kissela BM, Mitchell PH, Skolarus LE, Whooley MA, Williams LS; on behalf of the American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research. Poststroke depression: a scientific statement for healthcare professionals from the American Heart Association/ American Stroke Association. *Stroke*. 2017;48:e30–e43. doi: 10.1161/STR.000000000000113.
- 243. AVERT Trial Collaboration Group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. *Lancet*. 2015;386:46–55.
- 244. Raco A, Caroli E, Isidori A, Salvati M. Management of acute cerebellar infarction: one institution's experience. *Neurosurgery*. 2003;53:1061–1605.
- 245. Agarwalla PK, Stapleton CJ, Ogilvy CS. Craniectomy in acute ischemic stroke. *Neurosurgery*. 2014;74(suppl 1):S151–S162. doi: 10.1227/ NEU.00000000000226.
- 246. Mostofi K. Neurosurgical management of massive cerebellar infarct outcome in 53 patients. *Surg Neurol Int.* 2013;4:28. doi: 10.4103/2152-7806.107906.
- 247. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, Amelink GJ, Schmiedeck P, Schwab S, Rothwell PM, Bousser MG, van der Worp HB, Hacke W; DECIMAL, DESTINY, and HAMLET Investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. *Lancet Neurol*. 2007;6:215–222. doi: 10.1016/S1474-4422(07)70036-4.

- 248. Maciel CB, Sheth KN. Malignant MCA stroke: an update on surgical decompression and future directions. *Curr Atheroscler Rep.* 2015;17:40. doi: 10.1007/s11883-015-0519-4.
- 249. Yang MH, Lin HY, Fu J, Roodrajeetsing G, Shi SL, Xiao SW. Decompressive hemicraniectomy in patients with malignant middle cerebral artery infarction: a systematic review and meta-analysis. *Surgeon*. 2015;13:230–240. doi: 10.1016/j.surge.2014.12.002.
- 250. Alexander P, Heels-Ansdell D, Siemieniuk R, Bhatnagar N, Chang Y, Fei Y, Zhang Y, McLeod S, Prasad K, Guyatt G. Hemicraniectomy versus medical treatment with large MCA infarct: a review and meta-analysis. *BMJ Open*. 2016;6:e014390. doi: 10.1136/bmjopen-2016-014390.
- 251. Sundseth J, Sundseth A, Jacobsen EA, Pripp AH, Sorteberg W, Altmann M, Lindegaard KF, Berg-Johnsen J, Thommessen B. Predictors of early in-hospital death after decompressive craniectomy in swollen middle cerebral artery infarction. *Acta Neurochir (Wien)*. 2017;159:301– 306. doi: 10.1007/s00701-016-3049-0.
- 252. Suyama K, Horie N, Hayashi K, Nagata I. Nationwide survey of decompressive hemicraniectomy for malignant middle cerebral artery infarction in Japan. *World Neurosurg.* 2014;82:1158–1163. doi: 10.1016/j.wneu.2014.07.015.
- 253. Yu JW, Choi JH, Kim DH, Cha JK, Huh JT. Outcome following decompressive craniectomy for malignant middle cerebral artery infarction in patients older than 70 years old. *J Cerebrovasc Endovasc Neurosurg*. 2012;14:65–74. doi: 10.7461/jcen.2012.14.2.65.
- 254. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, Gondan M, Schiller P, Limprecht R, Luntz S, Schneider H, Pinzer T, Hobohm C, Meixensberger J, Hacke W; DESTINY II Investigators. Hemicraniectomy in older patients with extensive middle-cerebralartery stroke. *N Engl J Med.* 2014;370:1091–1100. doi: 10.1056/NEJMoa1311367.
- 255. Zhao J, Su YY, Zhang Y, Zhang YZ, Zhao R, Wang L, Gao R, Chen W, Gao D. Decompressive hemicraniectomy in malignant middle cerebral artery infarct: a randomized controlled trial enrolling patients up to 80 years old. *Neurocrit Care.* 2012;17:161–171. doi: 10.1007/s12028-012-9703-3.
- 256. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. *Crit Care Med.* 2010;38:1348–1359. doi: 10.1097/CCM.0b013e3181d8cf2b.
- 257. Wan YH, Nie C, Wang HL, Huang CY. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: a meta-analysis. *J Stroke Cerebrovasc Dis.* 2014;23:2736–2747. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.017.
- 258. 321. Deleted
- 322. Kim JT, Heo SH, Park MS, Chang J, Choi KH, Cho KH. Use of antithrombotics after hemorrhagic transformation in acute ischemic stroke. *PLoS One.* 2014;9:e89798. doi: 10.1371/journal.pone.0089798.
- 323. England TJ, Bath PM, Sare GM, Geeganage C, Moulin T, O'Neill D, Woimant F, Christensen H, De Deyn P, Leys D, Ringelstein EB; on behalf of the TAIST Investigators. Asymptomatic hemorrhagic transformation of infarction and its relationship with functional outcome and stroke subtype: assessment from the Tinzaparin in Acute Ischaemic Stroke Trial. *Stroke*. 2010;41:2834–2839. doi: 10.1161/ STROKEAHA.109.573063.
- 324. Deleted

- 325. Larsson SC, King A, Madigan J, Levi C, Norris JW, Markus HS. Prognosis of carotid dissecting aneurysms: results from CADISS and a systematic review. *Neurology*. 2017;88:646–652. doi: 10.1212/WNL.00000000003617.
- 326. Ahlhelm F, Benz RM, Ulmer S, Lyrer P, Stippich C, Engelter S. Endovascular treatment of cervical artery dissection: ten case reports and review of the literature. *Interv Neurol.* 2013;1:143–150. doi: 10.1159/000351687.
- 327. 335. Deleted
- 336. Schwartz J, Dreyer RP, Murugiah K, Ranasinghe I. Contemporary prehospital emergency medical services response times for suspected stroke in the United States. *Prehosp Emerg Care*. 2016;20:560–565. doi: 10.3109/10903127.2016.1139219.
- 337. Morgenstern LB, Gonzales NR, Maddox KE, Brown DL, Karim AP, Espinosa N, Moyé LA, Pary JK, Grotta JC, Lisabeth LD, Conley KM. A randomized, controlled trial to teach middle school children to recognize stroke and call 911: the Kids Identifying and Defeating Stroke Project. *Stroke*. 2007;38:2972–2978. doi: 10.1161/STROKEAHA.107.490078.
- 338. Carrera D, Campbell BC, Cortés J, Gorchs M, Querol M, Jiménez X, Millán M, Dávalos A, Pérez de la Ossa N. Predictive value of modifications of the prehospital rapid arterial occlusion evaluation scale for large vessel occlusion in patients with acute stroke. J Stroke Cerebrovasc Dis. 2017;26:74–77. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.032.
- 339. Kim JT, Chung PW, Starkman S, Sanossian N, Stratton SJ, Eckstein M, Pratt FD, Conwit R, Liebeskind DS, Sharma L, Restrepo L, Tenser MK, Valdes-Sueiras M, Gornbein J, Hamilton S, Saver JL; on behalf of the FAST-MAG Trial (Field Administration of Stroke Therapy–Magnesium) Nurse-Coordinators and Investigators. Field validation of the Los Angeles Motor Scale as a tool for paramedic assessment of stroke severity. *Stroke*. 2017;48:298–306. doi: 10.1161/STROKEAHA.116.015247.
- 340. McMullan JT, Katz B, Broderick J, Schmit P, Sucharew H, Adeoye O. Prospective prehospital evaluation of the Cincinnati Stroke Triage Assessment Tool. *Prehosp Emerg Care*. 2017:1–8.
- 341. Sauser K, Levine DA, Nickles AV, Reeves MJ. Hospital variation in thrombolysis times among patients with acute ischemic stroke: the contributions of door-to-imaging time and imaging-to-needle time. *JAMA Neurol*. 2014;71:1155–1161. doi: 10.1001/jamaneurol.2014.1528.
- 342. van Wijngaarden JD, Dirks M, Niessen LW, Huijsman R, Dippel DW. Do centres with well-developed protocols, training and infrastructure have higher rates of thrombolysis for acute ischaemic stroke? *QJM*. 2011;104:785–791. doi: 10.1093/qjmed/hcr075.
- 343. Jeng JS, Tang SC, Deng IC, Tsai LK, Yeh SJ, Yip PK. Stroke center characteristics which influence the administration of thrombolytic therapy for acute ischemic stroke: a national survey of stroke centers in Taiwan. J Neurol Sci. 2009;281:24–27. doi: 10.1016/ j.jns.2009.03.004.
- 344. Douglas VC, Tong DC, Gillum LA, Zhao S, Brass LM, Dostal J, Johnston SC. Do the Brain Attack Coalition's criteria for stroke centers improve care for ischemic stroke? *Neurology*. 2005;64:422–427. doi: 10.1212/01.WNL.0000150903.38639.E1.
- 345. Asimos AW, Norton HJ, Price MF, Cheek WM. Therapeutic yield and outcomes of a community teaching hospital code stroke protocol. *Acad Emerg Med.* 2004;11:361–370.
- 346. Demaerschalk BM, Bobrow BJ, Raman R, Kiernan TE, Aguilar MI, Ingall TJ, Dodick DW, Ward MP, Richemont PC, Brazdys K, Koch TC, Miley ML, Hoffman Snyder CR, Corday DA, Meyer BC; for the STRokE DOC AZ TIME Investigators. Stroke team remote evaluation

using a digital observation camera in Arizona: the initial Mayo Clinic Experience Trial. *Stroke*. 2010;41:1251–1258. doi: 10.1161/STROKEAHA.109.574509.

- 347. Meyer BC, Raman R, Hemmen T, Obler R, Zivin JA, Rao R, Thomas RG, Lyden PD. Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study. *Lancet Neurol.* 2008;7:787–795. doi: 10.1016/S1474-4422(08)70171-6.
- 348. Rai AT, Smith MS, Boo S, Tarabishy AR, Hobbs GR, Carpenter JS. The 'pit-crew' model for improving door-to-needle times in endovascular stroke therapy: a Six-Sigma project. *J Neurointerv Surg.* 2016;8:447–452. doi: 10.1136/neurintsurg-2015-012219.
- 349. Wardlaw JM, Carpenter T, Sakka E, Mair G, Cohen G, Shuler K, Palmer JM, Innes K, Sandercock PA. Imaging perfusion deficits, arterial patency and thrombolysis safety and efficacy in acute ischaemic stroke: an observational study of the effect of advanced imaging methods in the Third International Stroke Trial (IST-3), a randomised controlled trial. *Efficacy Mech Eval*. 2014;1(3). doi: 10.3310/eme.01030.
- 350. Mocco J, Zaidat OO, von Kummer R, Yoo AJ, Gupta R, Lopes D, Frei D, Shownkeen H, Budzik R, Ajani ZA, Grossman A, Altschul D, McDougall C, Blake L, Fitzsimmons BF, Yavagal D, Terry J, Farkas J, Lee SK, Baxter B, Wiesmann M, Knauth M, Heck D, Hussain S, Chiu D, Alexander MJ, Malisch T, Kirmani J, Miskolczi L, Khatri P; THERAPY Trial Investigators. Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone. *Stroke*. 2016;47:2331–2338. doi: 10.1161/STROKEAHA.116.013372.
- 351. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, Jauch EC, Jovin TG, Yan B, Silver FL, von Kummer R, Molina CA, Demaerschalk BM, Budzik R, Clark WM, Zaidat OO, Malisch TW, Goyal M, Schonewille WJ, Mazighi M, Engelter ST, Anderson C, Spilker J, Carrozzella J, Ryckborst KJ, Janis LS, Martin RH, Foster LD, Tomsick TA; Interventional Management of Stroke (IMS) III Investigators. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. *N Engl J Med.* 2013;368:893–903. doi: 10.1056/NEJMoa1214300.
- 352. Ciccone A, Valvassori L, Nichelatti M, Sgoifo A, Ponzio M, Sterzi R, Boccardi E; SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke. *N Engl J Med.* 2013;368:904–913. doi: 10.1056/NEJMoa1213701.
- 353. Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z, Feng L, Meyer BC, Olson S, Schwamm LH, Yoo AJ, Marshall RS, Meyers PM, Yavagal DR, Wintermark M, Guzy J, Starkman S, Saver JL; MR RESCUE Investigators. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368:914–923. doi: 10.1056/NEJMoa1212793.
- 354. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS, Smith WS; TREVO 2 Trialists. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. *Lancet*. 2012;380:1231–1240. doi: 10.1016/S0140-6736(12)61299-9.
- 355. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R, Zaidat OO; SWIFT Trialists. Solitaire Flow Restoration Device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. *Lancet.* 2012;380:1241–1249. doi: 10.1016/S0140-6736(12)61384-1.
- 356. Ogawa A, Mori E, Minematsu K, Taki W, Takahashi A, Nemoto S, Miyamoto S, Sasaki M, Inoue T; for the MELT Japan Study Group. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: the Middle Cerebral Artery Embolism Local Fibrinolytic Intervention Trial (MELT) Japan. *Stroke*. 2007;38:2633–2639. doi: 10.1161/STROKEAHA.107.488551.

- 357. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F. Intraarterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial: Prolyse in Acute Cerebral Thromboembolism. *JAMA*. 1999;282:2003–2011.
- 358. Ali K, Warusevitane A, Lally F, Sim J, Sills S, Pountain S, Nevatte T, Allen M, Roffe C. The Stroke Oxygen Pilot Study: a randomized controlled trial of the effects of routine oxygen supplementation early after acute stroke: effect on key outcomes at six months. *PLoS One*. 2014;8:e59274. doi: 10.1371/journal.pone.0059274.
- 359. Singhal A, Partners SPOTRIAS Investigators. A phase IIB clinical trial of normobaric oxygen therapy (NBO) in acute ischemic stroke (AIS). *Neurology*. 2013;80(suppl):S02.001.
- 360. Roffe C, Ali K, Warusevitane A, Sills S, Pountain S, Allen M, Hodsoll J, Lally F, Jones P, Crome P. The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke: effect on recovery of neurological function at one week. *PLoS One.* 2011;6:e19113. doi: 10.1371/journal.pone.0019113.
- 361. Roffe C, Sills S, Pountain SJ, Allen M. A randomized controlled trial of the effect of fixed-dose routine nocturnal oxygen supplementation on oxygen saturation in patients with acute stroke. J Stroke Cerebrovasc Dis. 2010;19:29–35. doi: 10.1016/j.jstrokecerebrovasdis. 2009.02.008.
- 362. Singhal AB, Benner T, Roccatagliata L, Koroshetz WJ, Schaefer PW, Lo EH, Buonanno FS, Gonzalez RG, Sorensen AG. A pilot study of normobaric oxygen therapy in acute ischemic stroke. *Stroke*. 2005;36:797–802. doi: 10.1161/01.STR.0000158914.66827.2e.
- 363. Rønning OM, Guldvog B. Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. *Stroke*. 1999;30:2033–2037.
- 364. Adelman EE, Scott PA, Skolarus LE, Fox AK, Frederiksen SM, Meurer WJ. Protocol deviations before and after treatment with intravenous tissue plasminogen activator in community hospitals. *J Stroke Cerebrovasc Dis.* 2016;25:67–73. doi: 10.1016/j.jstrokecerebrovasdis. 2015.08.036.
- 365. Kodankandath TV, Shaji J, Kohn N, Arora R, Salamon E, Libman RB, Katz JM. Poor hypertension control and longer transport times are associated with worse outcome in drip-and-ship stroke patients. *J Stroke Cerebrovasc Dis.* 2016;25:1887–1890. doi: 10.1016/j. jstrokecerebrovasdis.2016.04.013.
- 366. Lyerly MJ, Albright KC, Boehme AK, Bavarsad Shahripour R, Houston JT, Rawal PV, Kapoor N, Alvi M, Sisson A, Alexandrov AW, Alexandrov AV. Safety of protocol violations in acute stroke tPA administration. J Stroke Cerebrovasc Dis. 2014;23:855–860. doi: 10.1016/j.jstrokecerebrovasdis.2013.07.019.
- 367. Kellert L, Rocco A, Sykora M, Hacke W, Ringleb PA. Frequency of increased blood pressure levels during systemic thrombolysis and risk of intracerebral hemorrhage. *Stroke*. 2011;42:1702–1706. doi: 10.1161/STROKEAHA.110.604744.
- 368. Karaszewski B, Thomas RG, Dennis MS, Wardlaw JM. Temporal profile of body temperature in acute ischemic stroke: relation to stroke severity and outcome. *BMC Neurol.* 2012;12:123. doi: 10.1186/1471-2377-12-123.

- 369. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW. An early rise in body temperature is related to unfavorable outcome after stroke: data from the PAIS study. *J Neurol*. 2011;258:302–307. doi: 10.1007/s00415-010-5756-4.
- 370. Broessner G, Beer R, Lackner P, Helbok R, Fischer M, Pfausler B, Rhorer J, Küppers-Tiedt L, Schneider D, Schmutzhard E. Prophylactic, endovascularly based, long-term normothermia in ICU patients with severe cerebrovascular disease: bicenter prospective, randomized trial. *Stroke*. 2009;40:e657–e665. doi: 10.1161/STROKEAHA.109.557652.
- 371. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, Koudstaal PJ, Dippel DW; PAIS Investigators. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial: a multicentre, randomised, placebo-controlled, phase III trial. *Lancet Neurol*. 2009;8:434–440. doi: 10.1016/S1474-4422(09)70051-1.
- 372. Horn CM, Sun CH, Nogueira RG, Patel VN, Krishnan A, Glenn BA, Belagaje SR, Thomas TT, Anderson AM, Frankel MR, Schindler KM, Gupta R. Endovascular Reperfusion and Cooling in Cerebral Acute Ischemia (ReCCLAIM I). J Neurointerv Surg. 2014;6:91–95. doi: 10.1136/neurintsurg-2013-010656.
- 373. Su Y, Fan L, Zhang Y, Zhang Y, Ye H, Gao D, Chen W, Liu G. Improved neurological outcome with mild hypothermia in surviving patients with massive cerebral hemispheric infarction. *Stroke*. 2016;47:457–463. doi: 10.1161/STROKEAHA.115.009789.
- 374. Hong JM, Lee JS, Song HJ, Jeong HS, Jung HS, Choi HA, Lee K. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke. *Stroke*. 2014;45:134–140. doi: 10.1161/STROKEAHA.113.003143.
- 375. Ovesen C, Brizzi M, Pott FC, Thorsen-Meyer HC, Karlsson T, Ersson A, Christensen H, Norrlin A, Meden P, Krieger DW, Petersson J. Feasibility of endovascular and surface cooling strategies in acute stroke. *Acta Neurol Scand.* 2013;127:399–405. doi: 10.1111/ane.12059.
- 376. Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0-to 6-hour acute stroke trial, part A (A0276g): results of a doubleblind, placebo-controlled, multicenter study: Thromblytic Therapy in Acute Ischemic Stroke Study Investigators. *Stroke*. 2000;31:811–816.
- 377. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (alteplase) for ischemic stroke 3 to 5 hours after symptom onset: the ATLANTIS study: a randomized controlled trial: Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA. 1999;282: 2019–2026.
- 378. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E, Trouillas P. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II): Second European-Australasian Acute Stroke Study Investigators. *Lancet.* 1998;352:1245–1251.
- 379. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, Boysen G, Bluhmki E, Höxter G, Mahagne MH. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). *JAMA*. 1995;274:1017–1025.
- 380. Mori E, Minematsu K, Nakagawara J, Hasegawa Y, Nagahiro S, Okada Y, Truelsen T, Lindsten A, Ogawa A, Yamaguchi T; on behalf of the DIAS-J Investigators. Safety and tolerability of desmoteplase within 3 to 9 hours after symptoms onset in Japanese patients with ischemic stroke. *Stroke*. 2015;46:2549–2554. doi: 10.1161/STROKEAHA.115.009917.

- 381. Coutinho JM, Liebeskind DS, Slater LA, Nogueira RG, Clark W, Davalos A, Bonafe A, Jahan R, Fischer U, Gralla J, Saver JL, Pereira VM. Combined intravenous thrombolysis and thrombectomy vs thrombectomy alone for acute ischemic stroke: a pooled analysis of the SWIFT and STAR Studies. JAMA Neurol. 2017;74:268–274. doi: 10.1001/jamaneurol.2016.5374.
- 382. Grech R, Pullicino R, Thornton J, Downer J. An efficacy and safety comparison between different stentriever designs in acute ischaemic stroke: a systematic review and meta-analysis. *Clin Radiol.* 2016;71:48–57. doi: 10.1016/j.crad.2015.09.011.
- 383. Rodrigues FB, Neves JB, Caldeira D, Ferro JM, Ferreira JJ, Costa J. Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis. *BMJ*. 2016;353:i1754.
- 384. Touma L, Filion KB, Sterling LH, Atallah R, Windle SB, Eisenberg MJ. Stent retrievers for the treatment of acute ischemic stroke: a systematic review and meta-analysis of randomized clinical trials. *JAMA Neurol.* 2016;73:275–281. doi: 10.1001/jamaneurol.2015.4441.
- 385. Badhiwala JH, Nassiri F, Alhazzani W, Selim MH, Farrokhyar F, Spears J, Kulkarni AV, Singh S, Alqahtani A, Rochwerg B, Alshahrani M, Murty NK, Alhazzani A, Yarascavitch B, Reddy K, Zaidat OO, Almenawer SA. Endovascular thrombectomy for acute ischemic stroke: a meta-analysis. JAMA. 2015;314:1832–1843. doi: 10.1001/jama.2015.13767.
- 386. Chen CJ, Ding D, Starke RM, Mehndiratta P, Crowley RW, Liu KC, Southerland AM, Worrall BB. Endovascular vs medical management of acute ischemic stroke. *Neurology*. 2015;85:1980–1990. doi: 10.1212/WNL.00000000002176.
- 387. Elgendy IY, Kumbhani DJ, Mahmoud A, Bhatt DL, Bavry AA. Mechanical thrombectomy for acute ischemic stroke: a meta-analysis of randomized trials. *J Am Coll Cardiol*. 2015;66:2498–2505. doi: 10.1016/j.jacc.2015.09.070.
- 388. Fargen KM, Neal D, Fiorella DJ, Turk AS, Froehler M, Mocco J. A meta-analysis of prospective randomized controlled trials evaluating endovascular therapies for acute ischemic stroke. *J Neurointerv Surg.* 2015;7:84–89. doi: 10.1136/neurintsurg-2014-011543.
- 389. Kumar G, Shahripour RB, Alexandrov AV. Recanalization of acute basilar artery occlusion improves outcomes: a meta-analysis. *J Neurointerv Surg.* 2015;7:868–874. doi: 10.1136/neurintsurg-2014-011418.
- 390. Marmagkiolis K, Hakeem A, Cilingiroglu M, Gundogdu B, Iliescu C, Tsitlakidou D, Katramados A. Safety and efficacy of stent retrievers for the management of acute ischemic stroke: comprehensive review and meta-analysis. JACC Cardiovasc Interv. 2015;8:1758–1765. doi: 10.1016/j.jcin.2015.07.021.
- 391. Yarbrough CK, Ong CJ, Beyer AB, Lipsey K, Derdeyn CP. Endovascular thrombectomy for anterior circulation stroke: systematic review and meta-analysis. *Stroke*. 2015;46:3177–3183. doi: 10.1161/STROKEAHA.115.009847.
- 392. Almekhlafi MA, Menon BK, Freiheit EA, Demchuk AM, Goyal M. A meta-analysis of observational intra-arterial stroke therapy studies using the Merci device, Penumbra system, and retrievable stents. *AJNR Am J Neuroradiol.* 2013;34:140–145. doi: 10.3174/ajnr.A3276.
- 393. Fields JD, Khatri P, Nesbit GM, Liu KC, Barnwell SL, Lutsep HL, Clark WM, Lansberg MG. Meta-analysis of randomized intra-arterial thrombolytic trials for the treatment of acute stroke due to middle cerebral artery occlusion. *J Neurointerv Surg.* 2011;3:151–155. doi: 10.1136/jnis.2010.002766.

- 394. Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment: a systematic review and meta-analysis. *AJNR Am J Neuroradiol*. 2015;36:525–529. doi: 10.3174/ajnr.A4159.
- 395. Li W, Lin L, Zhang M, Wu Y, Liu C, Li X, Huang S, Liang C, Wang Y, Chen J, Feng W. Safety and preliminary efficacy of early tirofiban treatment after alteplase in acute ischemic stroke patients. *Stroke*. 2016;47:2649–2651. doi: 10.1161/STROKEAHA.116.014413.
- 396. Wada T, Yasunaga H, Horiguchi H, Fushimi K, Matsubara T, Nakajima S, Yahagi N. Ozagrel for patients with noncardioembolic ischemic stroke: a propensity score-matched analysis. *J Stroke Cerebrovasc Dis.* 2016;25:2828–2837. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.044.
- 397. Sandercock PA, Counsell C, Kamal AK. Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev. 2008:CD000024.
- 398. Wang Q, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin and early neurologic deterioration in acute stroke caused by large artery occlusive disease. *Arch Neurol*. 2012;69:1454–1460. doi: 10.1001/archneurol.2012.1633.
- 399. Wang QS, Chen C, Chen XY, Han JH, Soo Y, Leung TW, Mok V, Wong KS. Low-molecular-weight heparin versus aspirin for acute ischemic stroke with large artery occlusive disease: subgroup analyses from the Fraxiparin in Stroke Study for the treatment of ischemic stroke (FISS-tris) study. *Stroke*. 2012;43:346–349. doi: 10.1161/STROKEAHA.111.628347.
- 400. Saver JL, Starkman S, Eckstein M, Stratton SJ, Pratt FD, Hamilton S, Conwit R, Liebeskind DS, Sung G, Kramer I, Moreau G, Goldweber R, Sanossian N; FAST-MAG Investigators and Coordinators. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. *N Engl J Med*. 2015;372:528–536. doi: 10.1056/NEJMoa1408827.
- 401. Hacke W, Schellinger PD, Albers GW, Bornstein NM, Dahlof BL, Fulton R, Kasner SE, Shuaib A, Richieri SP, Dilly SG, Zivin J, Lees KR; for the NEST 3 Committees and Investigators. Transcranial laser therapy in acute stroke treatment: results of Neurothera Effectiveness and Safety Trial 3, a phase III clinical end point device trial. *Stroke*. 2014;45:3187–3193. doi: 10.1161/STROKEAHA.114.005795.
- 402. Seedat J, Penn C. Implementing oral care to reduce aspiration pneumonia amongst patients with dysphagia in a South African setting. *S Afr J Commun Disord*. 2016;63.
- 403. Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G; CLOTS (Clots in Legs Or sTockings after Stroke) Trials Collaboration.
 Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. *Lancet*. 2013;382:516–524. doi: 10.1016/S0140-6736(13)61050-8.
- 404. Geeganage CM, Sprigg N, Bath MW, Bath PM. Balance of symptomatic pulmonary embolism and symptomatic intracerebral hemorrhage with low-dose anticoagulation in recent ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. *J Stroke Cerebrovasc Dis.* 2013;22:1018–1027. doi: 10.1016/j.jstrokecerebrovasdis.2012.03.005.
- 405. Qaseem A, Chou R, Humphrey LL, Starkey M, Shekelle P; Clinical Guidelines Committee of the American College of Physicians. Venous thromboembolism prophylaxis in hospitalized patients: a clinical practice guideline from the American College of Physicians. *Ann Intern Med.* 2011;155:625–632. doi: 10.7326/0003-4819-155-9-201111010-00011.

- 406. Herisson F, Godard S, Volteau C, Le Blanc E, Guillon B, Gaudron M; SEVEL Study Group. Early Sitting in Ischemic Stroke Patients (SEVEL): a randomized controlled trial. *PLoS One*. 2016;11:e0149466. doi: 10.1371/journal.pone.0149466.
- 407. Morreale M, Marchione P, Pili A, Lauta A, Castiglia SF, Spallone A, Pierelli F, Giacomini P. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach? *Eur J Phys Rehabil Med.* 2016;52:81–89.
- 408. Johansson E, Cuadrado-Godia E, Hayden D, Bjellerup J, Ois A, Roquer J, Wester P, Kelly PJ. Recurrent stroke in symptomatic carotid stenosis awaiting revascularization: a pooled analysis. *Neurology*. 2016;86:498–504. doi: 10.1212/WNL.0000000002354.
- 409. Bazan HA, Zea N, Jennings B, Smith TA, Vidal G, Sternbergh WC 3rd. Urgent carotid intervention is safe after thrombolysis for minor to moderate acute ischemic stroke. *J Vasc Surg.* 2015;62:1529–1538. doi: 10.1016/j.jvs.2015.07.082.
- 410. Chisci E, Pigozzi C, Troisi N, Tramacere L, Zaccara G, Cincotta M, Ercolini L, Michelagnoli S. Thirty-day neurologic improvement associated with early versus delayed carotid endarterectomy in symptomatic patients. *Ann Vasc Surg.* 2015;29:435–442. doi: 10.1016/j. avsg.2014.08.028.
- 411. Devlin TG, Phade SV, Hutson RK, Fugate MW, Major GR 2nd, Albers GW, Sirelkhatim AA, Sapkota BL, Quartfordt SD, Baxter BW. Computed tomography perfusion imaging in the selection of acute stroke patients to undergo emergent carotid endarterectomy. *Ann Vasc Surg.* 2015;29:125. e1–125.11. doi: 10.1016/j.avsg.2014.07.023.
- 412. Steglich-Arnholm H, Holtmannspötter M, Kondziella D, Wagner A, Stavngaard T, Cronqvist ME, Hansen K, Højgaard J, Taudorf S, Krieger DW. Thrombectomy assisted by carotid stenting in acute ischemic stroke management: benefits and harms. *J Neurol.* 2015;262:2668–2675. doi: 10.1007/s00415-015-7895-0.
- 413. Ferrero E, Ferri M, Viazzo A, Labate C, Berardi G, Pecchio A, Piazza S, Ripepi M, Nessi F. A retrospective study on early carotid endarterectomy within 48 hours after transient ischemic attack and stroke in evolution. *Ann Vasc Surg.* 2014;28:227–238. doi: 10.1016/j. avsg.2013.02.015.
- 414. Limone BL, Baker WL, Mearns ES, White CM, Kluger J, Coleman CI. Common flaws exist in published cost-effectiveness models of pharmacologic stroke prevention in atrial fibrillation. *J Clin Epidemiol*. 2014;67:1093–1102. doi: 10.1016/j.jclinepi.2014.05.013.
- 415. Shariat A, Yaghoubi E, Farazdaghi M, Aghasadeghi K, Borhani Haghighi A. Comparison of medical treatments in cryptogenic stroke patients with patent foramen ovale: a randomized clinical trial. *J Res Med Sci.* 2013;18:94–98.
- 416. Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP; for the PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: Patent Foramen Ovale in Cryptogenic Stroke Study. *Circulation*. 2002;105:2625–2631.
- 417. Kim JT, Park MS, Choi KH, Cho KH, Kim BJ, Han MK, Park TH, Park SS, Lee KB, Lee BC, Yu KH, Oh MS, Cha JK, Kim DH, Nah HW, Lee J, Lee SJ, Ko YC, Kim JG, Park JM, Kang K, Cho YJ, Hong KS, Choi JC, Kim DE, Ryu WS, Shin DI, Yeo MJ, Kim WJ, Lee J, Lee JS, Saver JL, Bae HJ. Different antiplatelet strategies in patients with new ischemic stroke while taking aspirin. *Stroke*. 2016;47:128–134. doi: 10.1161/STROKEAHA.115.011595.

- 418. Lee M, Wu YL, Saver JL, Lee HC, Lee JD, Chang KC, Wu CY, Lee TH, Wang HH, Rao NM, Ovbiagele B. Is clopidogrel better than aspirin following breakthrough strokes while on aspirin? A retrospective cohort study. *BMJ Open.* 2014;4:e006672. doi: 10.1136/bmjopen-2014-006672.
- 419. Abdul-Rahim AH, Fulton RL, Frank B, Tatlisumak T, Paciaroni M, Caso V, Diener HC, Lees KR; VISTA Collaborators. Association of improved outcome in acute ischaemic stroke patients with atrial fibrillation who receive early antithrombotic therapy: analysis from VISTA. *Eur J Neurol.* 2015;22:1048–1055. doi: 10.1111/ene.12577.
- 420. Jensen J, Salottolo K, Frei D, Loy D, McCarthy K, Wagner J, Whaley M, Bellon R, Bar-Or D. Comprehensive analysis of intra-arterial treatment for acute ischemic stroke due to cervical artery dissection. *J Neurointerv Surg.* 2017;9:654–658. doi: 10.1136/neurintsurg-2016-012421.
- 421. Aronow HD, Novaro GM, Lauer MS, Brennan DM, Lincoff AM, Topol EJ, Kereiakes DJ, Nissen SE. In-hospital initiation of lipid-lowering therapy after coronary intervention as a predictor of long-term utilization: a propensity analysis. *Arch Intern Med.* 2003;163:2576–2582. doi: 10.1001/archinte.163.21.2576.

Data Supplement 2

Literature Searches

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
		· 			sment and management: recognize,				
					oke Awareness and Emergency Medic olled Trials for Improving Stroke Aware		se		
		Table 4.			cy Medical Services Use of Prehospital		ty Scales		
PubMed	10/25/2016	1/1/2012- 10/25/2016	Humans, English only	None	public education stroke	468	61	22	0
clinicaltrials.gov	10/25/2016	No restrictions	N/A	None	public education stroke	40	40	N/A	0
PubMed	10/25/2016	1/1/2012- 10/25/2016	English only	None	ems management stroke	66	66	23	0
PubMed	10/25/2016	1/1/2012- 10/25/2016	English only	None	prehospital stroke management	116	116	40	0
clinicaltrials.gov	10/26/2016	No restrictions	N/A	None	ems stroke	45	45	N/A	0
clinicaltrials.gov	10/26/2016	No restrictions	N/A	None	Prehospital stroke	49	49	N/A	0
		0 N I		• •	ation: benefit of stroke scale use				
	l abl 11/4/2016	e 3. Nonrandon	nized Trials, Observa	itional Studies, a	nd/or Registries of Prediction Value of	National Institi	utes of Health St	roke Scale	
PubMed	(updated 2/4/2017)	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	NIH Stroke Scale, Use	276	276	2	0
PubMed	11/4/2016 (updated 2/4/2017)	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	NIH Stroke Scale, Benefit	31	31	0	0
PubMed	11/4/2016 (updated 2/4/2017)	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	NIH Stroke Scale, Emergency	151	151	2	0

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
				f Baseline Imagi	ion IV alteplase interaction ng Computed Tomography Hypodensit lography Hyperdense Middle Cerebral /				
PubMed	10/30/2016	No limit (4/1/1990 - 2/28/2016 returned)	RCTs with interaction term calculated	Non-English	"tissue plasminogen activator"[MeSH Terms] AND ("brain ischemia/radiography"[Mesh Terms] OR "cerebrovascular disorders/radiography"[Mesh Terms] OR "stroke/radiography"[Mesh Terms]) AND ("randomized controlled trials as topic"[MeSH Terms] OR ("randomized controlled trial"[Publication Type] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trials" Fields] OR "randomised controlled trial"[All Fields]) OR ECASS[All Fields] OR "NINDS rt-PA Stroke Study"[All Fields] OR EPITHET[All Fields] OR "early ischemic changes"[All Fields] OR hypoattenuation[All Fields] OR "Alberta Stroke Program Early CT score"[All Fields])	82	82	7	5
EMBASE	10/30/2016	No limit (1/1/2004- 12/30/2016 returned)	RCTs with interaction term calculated	Non-English	'tissue'/exp OR tissue AND ('plasminogen'/exp OR plasminogen) AND activator AND 'clinical' AND trial AND (early AND ischemic AND changes OR hypoattenuation OR 'alberta'/exp OR alberta) AND ('stroke'/exp OR stroke) AND program AND early AND ct AND score	21	21	1	0
Other	10/31/2016	N/A	RCTs with interaction term calculated	Non-English	Personal files, referenced by other studies	5	4	4	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
	Tah	le 17 Randomi	zed Controlled Trials		nuation IAT interaction Baseline Imaging CT Hypodensity with	n Treatment Fi	fect for IV altent	950	
PubMed	10/31/2016	1/1/2015 – 12/31/2016	RCTs with interaction term calculated	Non-English	stroke AND "Alberta Stroke Program Early CT score" AND (thrombectomy OR endovascular)	49	49	5	2
EMBASE	10/31/2016	No limit (1/1/2011 - 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	thrombectomy AND 'clinical' AND trial AND (early AND ischemic AND changes OR hypoattenuation OR 'alberta'/exp OR alberta) AND ('stroke'/exp OR stroke) AND program AND early AND ct AND score	17	17	0	0
Other	10/31/2016	N/A	RCTs with interaction term calculated	Non-English	Personal files, referenced by other studies	1	1	1	1
Table 18 Ra	andomized Contr	olled Trials of Ir	nteraction of Baseline		MCA IV alteplase interaction ography Hyperdense Middle Cerebral /	Artery Sian wi	th Treatment Effe	ect for Intraver	nous Altenlase
PubMed	10/21/2016	No limit (1/1/2010 - 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	"tissue plasminogen activator"[MeSH Terms] AND ("brain ischemia/radiography"[Mesh Terms] OR "cerebrovascular disorders/radiography"[Mesh Terms] OR "stroke/radiography"[Mesh Terms]) AND ("randomized controlled trials as topic"[MeSH Terms] OR ("randomized controlled trial"[Publication Type] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trials as topic"[MeSH Terms] OR "randomized controlled trial"[All Fields] OR "randomised controlled trial"[All Fields])) AND "hyperdense middle cerebral artery"[All Fields]	1 (and 16 cited by)	17	2	2

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
EMBASE	10/30/2016	No limit (1/1/1999 - 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	'tissue'/exp OR tissue AND ('plasminogen'/exp OR plasminogen) AND activator AND 'clinical' AND trial AND hyperdense middle cerebral artery sign	4	34	3	1
Table 10 Observ	rational Studios a	f Interaction of	Pagalina Magnatia D		ICA IV alteplase interaction II ng of Cerebral Microbleeds with Sympto	motio Intropo	robrol Homorrho	ao Aftor Intro	ionaua Altanlaga
PubMed	11/2/2016	No limit (1/1/2004 - 12/31/2015 returned)	RCTs with interaction term calculated	Non-English	Thrombectomy OR endovascular OR intra-arterial AND "hyperdense middle cerebral artery"[All Fields]	10	10	0	0
EMBASE	10/30/2016	No limit (1/1/2012- 12/31/2016 returned)	RCTs with interaction term calculated	Non-English	thrombectomy AND 'clinical' AND trial AND hyperdense middle cerebral artery sign	2	2	0	0
			Table 16 Obser	Door-to-ir	naging times achievable of 2016 Door-to-Computed Tomograp	hy Timos			
PubMed	10/31/2016	2016 publication date	US only, door-to- CT time	Non-English	("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND (door-to- CT[All Fields] OR (door-to- needle[All Fields] AND ("contraindications"[Subheading] OR "contraindications"[All Fields] OR "ct"[All Fields]))) 2014-2016	15	15	4	3
EMBASE	10/31/2016	2016 publication date	US only, door-to- CT time	Non-English	stroke AND 'door to ct'	25	25	0	0
Other	10/31/2016	2016 publication date	US only, door-to- CT time	Non-English	Personal files, referenced by other studies	1	1	1	1
	Table 2			ntrolled Trials of	ultimodal imaging Intravenous Thrombolytics Employing d/or Registries of Intravenous Thrombo			naging	
PubMed	10/10/2016 (updated 10/11/2016)	No range	None	None	acute ischemic stroke AND trial OR multimodal imaging OR penumbra OR mismatch OR imaging selection	357	274	27	8
Other	10/11/16	No range	None	None	Personal files	1	1	1	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
	Table 22			nal Studies, and	collateral status imaging /or Registries of Creatinine Testing Prio rvational Studies, and/or Registries of 0			ography	
PubMed	10/10/2016 (updated 10/11/2016	No range	None	None	acute stroke AND CTA OR MRA OR vessel imaging OR collaterals	757	395	37	8
Table 10 Obse	nuctional Studioa	of Interaction o			e MRI microbleeds with IV alteplase ing of Cerebral Microbleeds with Symp		orobrol Homorrh		
PubMed	11/16/2016	11/16/2016 -7/31/2013	English only, Adults, meta- analyses	abstracts, includes studies included in more recent meta- analyses	microbleeds AND stroke AND thrombolysis AND meta-analysis	6	6	2	2
Embase	11/16/2016	11/16/2016 -8/31/2004	English only, Adults, meta- analyses	abstracts, includes studies included in more recent meta- analyses	microbleeds AND stroke AND thrombolysis AND meta-analysis	17	17	0	0
		Table 20	Venrondomized Trial		Blood pressure Studies, and/or Registries of Blood Pre	agura and Th	rombolygia		
PubMed	10/28/2016 (updated 2/28/2017)	1/1/2010- 2/28/2017	from 2010 on; English	pediatric, foreign lang	blood pressure and AIS; vasoactive agents and AIS	582	321	20	8
			Table 26 Ra		en supplementation blled Trials Comparing Supplemental C	lxvaen			
PubMed	10/26/2016 (updated 10/27/2016)	1/1/2010- 10/27/2016	from 2010 on; English	pediatric, foreign lang	oxygen supplementation and acute stroke	6	5	1	0
PubMed	10/28/2016 (updated 12/7/2016)	1/1/2010- 12/7/2016	from 2010 on; English	pediatric, foreign lang	acute stroke and oxygen supplementation	18	10	4	4
Google	12/7/2016	1/1/2010- 12/7/2016	from 2010 on; English	pediatric, foreign lang	singhal and oxygen and stroke	2	2	1	2

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					Temperature				· · ·
					es of Hyperthermia After Acute Ischem ed Controlled Trials of Normothermia	ic Stroke			
					Observational Studies, and/or Registrie	es of Hypother	mia		
			Tab		ed Controlled Trials of Hypothermia				
PubMed		1/1/2010-	from 2010 on;	pediatric,	hypothermia and acute stroke	210	51	15	8
	11/21/2016	11/21/2016	English	foreign lang		210	01		<u> </u>
PubMed	10/27/2016	1/1/2010- 10/27/2016	from 2010 on; English	pediatric, foreign lang	hyperthermia and acute stroke	202	50	0	0
PubMed		1/1/2010-	from 2010 on;	pediatric,	normothermia and acute stroke	73	15	6	4
Fubivieu	11/21/2016	11/21/2016	English	foreign lang		13	15	0	4
PubMed	11/21/2016	1/1/2010- 11/21/2016	from 2010 on; English	pediatric,	anti-pyretics and acute stroke	318	3	2	1
	11/21/2010	11/21/2010	English	foreign lang	re and Endovascular Therapy				
		Table 29. N	Nonrandomized Trial		Studies, and/or Registries of Blood Pre	essure and Th	rombolvsis		
PubMed		1/1/2010-	from 2010 on;	pediatric,	blood pressure and stroke and	83	5	1	1
Fubivieu	10/28/2016	10/28/2016	English	foreign lang	endovascular therapy	03	5		1
PubMed	40/00/0040	1/1/2010-	from 2010 on;	pediatric,	blood pressure and stroke and	43	3	0	0
	10/28/2016	10/28/2016	English	foreign lang	recanalization Hypertension Therapy				
		1/1/2010-	from 2010 on;	pediatric,					
PubMed	11/9/2016	11/9/2016	English	foreign lang	induced HTN - therapy - stroke	297	1	0	0
		•	0		ic Hypertension – Stroke				L
PubMed		1/1/2010-	from 2010 on;	pediatric,	therapeutic hypertension - stroke	373	1	1	0
	11/9/2016	11/9/2016	English	foreign lang		010		•	.
PubMed	11/9/2016	1/1/2010- 11/9/2016	from 2010 on; English	pediatric, foreign lang	ischemic stroke - vasopressors	120	0	0	0
	11/0/2010	1110/2010	Englion		ssure and Thrombolysis				
			Nonrandomized Trial		Studies, and/or Registries of Blood Pre	essure and Th	rombolysis		
PubMed	11/22/2016	1/1/2010- 11/22/2016	from 2010 on; English	pediatric, foreign lang	BP and thrombolysis and stroke	182	45	15	13
	11/22/2010	11/22/2010	Ligion	loroigir iaily	НВО	1		1	l
				<u>ed Trials, Obs</u> erv	ational Studies, and/or Registries of Hy	yperbaric Oxy	gen		
		1/1/2010 -	from 2010 on;	pediatric,	HBO and acute ischemic stroke	20	20	4	1
PubMed	3/29/2017	3/29/2017	English	foreign lang					'
PubMed	11/22/2016	1/1/2010- 11/22/2016	from 2010 on; English	pediatric, foreign lang	cerebral air emboli and stroke and HBO	10	1	1	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	11/22/2016	1/1/2010- 11/22/2016	from 2010 on; English	pediatric, foreign lang	cerebral air emboli and stroke	67	6	0	0
	11/22/2010	11/22/2010	LIIGIISII	loreigir iailg	Hypotension	07	0	0	0
			Table 23. Ra	ndomized Contro	olled Trials Comparing Endovascular Th	nerapy			
PubMed	12/14/2016	1/1/2010- 12/14/2016	from 2010 on; English	pediatric, foreign lang	hypotension and acute stroke and treatment	135	5	5	0
					IV lysis				
	Table 39		Controlled Trials Eva	luating Intraveno	us Fibrinolytics Other Than Alteplase for	or Treatment o	of Acute Ischemic	c Stroke	[
PubMed	12/16/2016	1/1/1980- 11/30/2016	RCTs	Non RCTs	thrombolysis + stroke + randomized	1250	543	78	21
		T 04 D			eplase, IV, stroke				
		Table 34. R	andomized Controlle	d Trials Evaluati	ng Intravenous Alteplase for Treatment	of Acute Isch	emic Stroke		
MEDLINE	12/22/2016	1/1/1995– 12/1/2016	Human, English, Adults	Non-RCTs	tissue plasminogen activator, rtPA, tPA, intravenous or IV alteplase, stroke or ischemic stroke or thrombosis or brain ischemia or cerebrovascular disorders	5134	879	269	87
	•				lase for mild stroke 3-4.5 hours			•	
					s of Intravenous Alteplase for Mild Stro				
	Tat	ole 36. Nonrand		rvational Studies	, and/or Registries of Intravenous Altep	lase 3–4.5 Ho	ours for Mild Stro	ke	[
PubMed	4/16/2017	thru 12/31/2009	3-4.5 hours RCT subgroup analysis	English only	ECASS III AND subgroup	3	3	1	1
PubMed	4/16/2017	thru 9/30/2005	registry compare < 3 to 3-4.5	English only	alteplase AND mild stroke AND 4.5	19	19	1	1
PubMed	4/16/2017	Thru 5/30/2013	registry compare < 3 to 3-4.5	English only	alteplase AND mild stroke AND 3- 4.5	2	2	1	1
PubMed	4/16/2017	thru 10/31/2008	registry compare < 3 to 3-4.5	English only	3-4.5 AND SITS-ISTR	5	5	1	0
Embase	4/16/2017	thru 12/31/2013	3-4.5 h data	English only	alteplase AND mild stroke AND 4.5 AND clinical trial	4	4	1	0
Table 38. N	Ionrandomized 1	Frials, Observat	ional Studies of Antit		venous Fibrinolysis s Given Within 24 Hours After Intravend	ous Alteplase	for the Treatmer	t of Acute Iscl	nemic Stroke
PubMed	12/16/2016	1/1/1995- 12/16/2016	Adults - after 1995	case reports	thrombolysis + stroke + antithrombotics OR antiplatelets	952	252	15	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
	•				ascular interventions			•	
					olled Trials Comparing Endovascular Tl				
	_				tional Studies, and/or Registries of Enc				
					Seneral Anesthesia to Conscious Seda				
Tabl	e 43. Nonrandon	nized Trials, Ob	servational Studies, a		Comparing General Anesthesia to Co	nscious Sedat	ion for Endovas	cular Stroke Th	nerapy
PubMed	9/21/2016	1/1/1966- 9/21/2016	humans, English-only, 10 or more patients	studies not regarding acute ischemic stroke, commentarie s, editorials, letters to the editor	acute ischemic stroke AND thrombectomy OR endovascular OR intra-arterial OR stent retriever OR clot retrieval	42,251	42,251	585	32
Cochrane Central Register of Controlled Trials	9/25/2016	1/1/1966- 9/25/2016	Humans, English-only. (Randomized trial, meta- analysis, systematic review, pooled analysis, or registry)	Studies not regarding acute ischemic stroke, commentarie s, editorials, letters to the editor	acute ischemic stroke AND thrombectomy OR endovascular OR intra-arterial OR stent retriever OR clot retrieval	3445	3445	197	32
			. eg.et. j/		Anticoagulation	1		1	
Table 47. No	onrandomized Stu	udies of Anticoa		domized Control	led Trials Comparing Anticoagulant to nic StrokeTable 77. Studies of Early Se		ention in Patient	s with Acute Is	chemic Stroke
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"anticoagulation", "acute ischemic stroke"	112	112	11	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans, Clinical Trial	None	"anticoagulation", "acute ischemic stroke"	5	5	1	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"enoxaparin", "acute ischemic stroke"	5	5	0	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"dalteparin", "acute ischemic stroke"	1	1	0	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"heparin", "acute ischemic stroke"	49	49	5	2

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"apixaban", "acute ischemic stroke"	12	12	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"rivaroxaban", "acute ischemic stroke"	20	20	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"dabigatran", "acute ischemic stroke"	30	30	3	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"argatroban", "acute ischemic stroke"	6	6	3	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"argatroban", "stroke"	38	38	2	2
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"edoxaban", "acute ischemic stroke"	4	4	0	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"fondaparinux", "acute ischemic stroke"	2	2	0	0
Table 45. R	andomized Contr				Antiplatelet tiplatelet Therapy in Patients with Acute 77. Nonrandomized Studies of Early Se			s with Acute Is	chemic Stroke
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"aspirin", "acute ischemic stroke"	98	98	1	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans, Clinical Trial	None	"aspirin", "acute ischemic stroke"	33	33	1	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"clopidogrel", "acute ischemic stroke"	47	47	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans, Clinical Trial	None	"clopidogrel", "acute ischemic stroke"	12	12	2	0
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"ticagrelor", "acute ischemic stroke"	4	4	2	1
PubMed	7/4/2017	1/1/2010- 7/4/2017	English & Humans	None	"prasugrel", "acute ischemic stroke"	0	0	0	0
PubMed	7/10/2017	1/1/2010- 7/4/2017	English & Humans	None	"cilostazol", "acute ischemic stroke"	14	14	1	0
					Neuroprotection Comparing Other Treatments for Acute	e Ischemic Str	oke		
PubMed	7/10/2017	1/1/2010- 7/10/2017	English & Humans	none	"neuroprotection", "acute ischemic stroke"	87	87	0	0

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					ess of CT/MRI in acute stroke			-	
PubMed	1able 15. Nonra 11/21/2016	3/1/1985- 11/30/2016	5, Observational Stud Formal cost- effectiveness analysis	Non-English	stries of Computed Tomography and M cost-effectiveness AND CT AND stroke	99	99	7	oke Care 3
PubMed	11/22/2016	3/1/1985- 11/30/2016	Formal cost- effectiveness analysis	Non-English	cost-effectiveness AND MRI AND stroke	70	70	1	0
Embase	12/5/2016	7/1/1999- 12/31/2016	Formal cost- effectiveness analysis	Non-English	cost effectiveness':ti AND ('ct'/exp OR ct) AND ('stroke'/exp OR stroke)	60	60	4	0
Embase	12/5/2016	7/1/1999- 12/31/2016	Formal cost- effectiveness analysis	Non-English	'cost':ti AND ('ct'/exp OR ct) AND ('stroke'/exp OR stroke)	104	104	0	0
Embase	12/5/2016	3/1/2003- 12/31/2016	Formal cost- effectiveness analysis	Non-English	'cost':ti AND mri AND ('stroke'/exp OR stroke)	30	30	0	0
					lood pressure II	D			či i
lable	50. Randomized		is Comparing Early	Versus Delayed I	nitiation of Treatment for Blood Pressu randomized controlled trials +	re Reduction	in Patients with P	Acute Ischemic	Stroke
PubMed	11/20/2016	1/1/1999– 11/20/2016	RCTs	Non RCTs	acute ischemic stroke + blood pressure treatment	180	180	59	14
	•				nent of hypotension				
		Table 28		als, Observationa	al Studies, and/or Registries of Hypoter	nsion and Hyp	ovolemia		
PubMed	4/30/2017	4/1/2017 - 12/31/1986	English only, association low blood pressure in acute ischemic stroke with outcome	Pediatric	Low blood pressure AND stroke	first 100 best match	13	13	8
			Namus da usina d Tri		nous fluids and stroke	atan and thur	a valanta		
PubMed	4/30/2017	12/1/2016- 7/31/1992	English only	als, Observationa Pediatric	al Studies, and/or Registries of Hypoter Fluids AND acute stroke	first 100 first 100 best match	ovolemia 6	6	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					near-infrared laser therapy				
			Table 49. Randomize	ed Controlled Tria	als Comparing Transcranial Laser Ther	apy for Stroke)		
PubMed	12/12/2016	1/1/2000 - 1/1/2016	English only, Adults>18	None	(transcranial[All Fields] AND near[All Fields] AND infrared[All Fields] AND ("lasers"[MeSH Terms] OR "lasers"[All Fields] OR "laser"[All Fields])) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])	26	26	4	2
	•	•	•		cranial laser therapy			•	
	-			ed Controlled Tria	als Comparing Transcranial Laser Ther	apy for Stroke			
PubMed	12/12/2016	1/12000 - 1/1/2016	English only, Adults>18; RCTs	None	NEST-3[All Fields]	4	4	2	1
PubMed	12/12/2016	1/1/2000- 1/1/2016	English only, Adults>18	None	NILT[All Fields] AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])	7	7	1	0
Embase	12/12/2016	1/1/2000 - 1/1/2016	English only, Adults>18	None	NILT[All Fields]	21	21	0	0
Embase	12/12/2016	1/1/2000 - 1/1/2016	English only, Adults>18	None	NEST-3 AND "stroke"[All Fields]	8	8	2	1
7	Table 59. Nonran Table 60. R	domized Trials, andomized Cor	Observational Studie	es, and/or Regist	rgical decompression suboccipital ries of Treatment of Cerebral and Cere reatment of Cerebral and Cerebellar Ed	bellar Edema Iema Followin	Following Acute g Acute Ischemi	Ischemic Stro	bke
Embase	1/20/2016	1/1/2014 - 1/1/2016	Cochrane review, Systematic review, Meta- analysis, controlled clinical trial	None	brain AND edema AND 'cerebrovascular accident' AND ([cochrane review]/lim OR [systematic review]/lim OR [meta analysis]/lim OR [controlled clinical trial]/lim) AND [2014-2016]/pi	48	48	1	1
Embase	1/20/2016	1/1/2013 - 1/1/2016	English speaking, adult >18	None	cerebral AND edema OR brain AND edema AND 'cerebrovascular accident' AND surgical AND decompression OR 'suboccipital craniotomy' OR 'suboccipital craniectomy' AND [2013-2016]/py	251	251	3	2

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
					l edema, impact of age				
-					tries of Treatment of Cerebral and Cere				oke
	Table 60. R	andomized Cor	ntrolled Trials Compa	aring Impact of T	reatment of Cerebral and Cerebellar Ed	lema Followin	g Acute Ischemi	c Infarction	[
PubMed	12/24/2016	1/1/2010 - 1/1/2016	RCTs and controlled trials	None	("decompressive craniectomy"[MeSH Terms] OR ("decompressive"[All Fields] AND "craniectomy"[All Fields]) OR "decompressive craniectomy"[All Fields]) AND (("Age"[Journal] OR "age"[All Fields] OR "Age (Omaha)"[Journal] OR "age"[All Fields] OR "Age (Dordr)"[Journal] OR "age"[All Fields] OR "Adv Genet Eng"[Journal] OR "age"[All Fields]) AND greater[All Fields] AND 60[All Fields]) OR ("aged"[MeSH Terms] OR "aged"[All Fields] OR "Iderly"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND ("brain oedema"[All Fields]) OR "brain edema"[MeSH Terms] OR ("brain"[All Fields]) OR "brain edema"[All Fields]) AND ((Clinical Trial[ptyp] OR Review[ptyp]) AND ("2014/01/01"[PDAT] : "2016/12/31"[PDAT])))	50	50	5	5
		_			Depression				
	1	Tabl		d Studies of Dep	ression Screening in Patients with Acu	te Ischemic St	roke		
PubMed	7/10/2017	1/1/2010 - 7/10/2017	English & Humans	None	"depression", "screen", "stroke"	28	28	0	0
	1			1					

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
т			Observational Studi	es, and/or Regist	, hypothermia, corticosteroids tries of Treatment of Cerebral and Cere eatment of Cerebral and Cerebellar Ec				ke
PubMed	1/29/2016	1/1/2010 - 1/1/2017	English speaking, adult >18	None	("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND "edema"[All Fields]) OR "brain edema"[All Fields]) OR "brain edema"[All Fields]) OR "cerebral edema"[All Fields]) OR "cerebral edema"[All Fields]) AND ("hypothermia"[MeSH Terms] OR "hypothermia"[All Fields]) AND ("adrenal cortex hormones"[Pharmacological Action] OR "adrenal cortex hormones"[MeSH Terms] OR ("adrenal"[All Fields] AND "cortex"[All Fields] AND "cortex"[All Fields] AND "cortex"[All Fields] AND "hormones"[All Fields] OR "adrenal cortex hormones"[All Fields] OR "corticosteroids"[All Fields])	35	35	1	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
Т	able 59. Nonran	domized Trials,	Observational Studie		ema, decompression timing tries of Treatment of Cerebral and Cere	bellar Edema	Following Acute	Ischemic Stro	
					reatment of Cerebral and Cerebellar Ed				
PubMed	12/24/2016	1/1/2014- 1/1/2016	English speaking, adult >18	None	(severe[All Fields] AND ("brain oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields]) OR "brain edema"[All Fields]) OR "brain edema"[All Fields]) OR "brain edema"[All Fields])) AND (major[All Fields] AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])) AND ("transfer (psychology)"[MeSH Terms] OR ("transfer"[All Fields] AND "(psychology)"[All Fields]) OR "transfer (psychology)"[All Fields]) OR "transfer"[All Fields]) OR "transfer (psychology)"[All Fields] OR "transfer"[All Fields]) AND (("neurosciences"[MeSH Terms] OR "neurosciences"[All Fields] OR "neuroscience"[All Fields]) AND ("intensive care units"[MeSH Terms] OR ("intensive"[All Fields] AND "care"[All Fields] AND "units"[All Fields]) OR "intensive care units"[All Fields] OR ("intensive"[All Fields] OR ("intensive"[All Fields] OR ("intensive"[All Fields] AND "care"[All Fields] AND	96	96	0	0

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
-			Observational Studie	es, and/or Regist	ventriculostomy, hydrocephalus tries of Treatment of Cerebral and Cere reatment of Cerebral and Cerebellar Ec				ke
PubMed	12/12/2016	1/2014- 1/2016	English speaking, adult >18	None	("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND "edema"[All Fields]) OR "brain edema"[All Fields]) OR "brain ("cerebral"[All Fields] OR ("cerebral"[All Fields]) AND ("hydrocephalus"[MeSH Terms] OR "hydrocephalus"[All Fields]) AND (("ischemia"[All Fields]) AND ("stroke"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])) AND ("ventriculostomy"[All Fields])) OR "ventriculostomy"[All Fields])	3	3	2	1
-				es, and/or Regist	al edema, barbiturates tries of Treatment of Cerebral and Cere				ke
PubMed	1/29/2016	1/1/2014- 1/1/2016	English speaking, adult >18	None	reatment of Cerebral and Cerebellar Ec ("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND "edema"[All Fields]) OR "brain edema"[All Fields]) OR "brain ("cerebral"[All Fields] OR ("cerebral"[All Fields]) AND "edema"[All Fields]) OR "cerebral edema"[All Fields]) AND (("ischemia"[MeSH Terms] OR "ischemia"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])) AND ("barbiturates"[MeSH Terms] OR "barbiturates"[All Fields])) AND	<u>lema Followin</u> 25	g Acute Ischemi	1	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
-	Tabla 50 Napran	domizod Triolo	Observational Studi		edema, corticosteroids ries of Treatment of Cerebral and Cere	bollor Edomo	Following Aguto	lachamia Str	a ka
	Table 59. Nonran	andomized Cor	trolled Trials Compa	aring Impact of Tr	eatment of Cerebral and Cerebellar Ed	lema Followin	a Acute Ischemi	nschemic Struction	же
PubMed	1/29/2016	1/1/2014- 1/1/2016	English speaking, adult >18	None	("cerebral oedema"[All Fields] OR "brain edema"[MeSH Terms] OR ("brain"[All Fields] AND "edema"[All Fields]) OR "brain edema"[All Fields]) OR "brain edema"[All Fields]) OR "cerebral edema"[All Fields]) OR "cerebral edema"[All Fields]) AND (("ischemia"[MeSH Terms] OR "ischemia"[All Fields]) AND (("stroke"[MeSH Terms] OR "stroke"[All Fields])) AND ("stroke"[All Fields])) AND ("atrenal"[All Fields]) OR "cortex hormones"[Pharmacological Action] OR "adrenal cortex hormones"[MeSH Terms] OR ("adrenal"[All Fields] AND "cortex"[All Fields] AND "cortex"[All Fields] AND "adrenal cortex hormones"[All Fields]) OR	47	47	2	1
	<u>I</u>	l			a, cerebellar decompression	1		1	1
ן				es, and/or Regist	ries of Treatment of Cerebral and Cere eatment of Cerebral and Cerebellar Ed				oke
PubMed	1/24/2016	1/1/1985- 1/1/2016	English speaking, adult >18	none	("cerebellum"[MeSH Terms] OR "cerebellum"[All Fields] OR "cerebellar"[All Fields]) AND ("infarction"[MeSH Terms] OR "infarction"[All Fields]) AND ("decompression"[MeSH Terms] OR "decompression"[All Fields])	86	86	3	1

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
		Table 7 N			r-to-needle treatment time in stroke chieving Rapid Door-to-Needle Times	for IV Altoplas	o in Stroko		
					cy of Multilevel Interventions to Increas				
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	Door to needle time, stroke	192	192	5	3
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	"Door-to-needle" time, stroke	188	188	5	3
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	DTN time, stroke	41	41	0	0
Cochrane Library	2/4/2017	no limit	Trials	Non-English	Door to needle time, stroke, variations	27	27	0	0
Google Scholar	2/4/2017	1/1/2011- 2/4/2017	In-Title Search	Non-English	"door to needle time stroke"	106	106	5	3
Table 72. Nonn	andomized Studi		·	ble 8. Randomize	teplase treatment in stroke ed Controlled Trials Comparing Efficac Use cy of Multilevel Interventions to Increas	-		Increase Intra	venous Alteplase
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	Quality Improvement, stroke	112	112	4	2
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	Community hospitals, stroke, time factors	55	55	5	3
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	Community hospitals, stroke, treatment,	26	26	5	3
				Comparing Effication	participation in QI registry cy of Multilevel Interventions to Increas the Impact of Stroke System Quality In				
PubMed	2/4/2017	1/1/2011- 2/4/2017	Clinical Studies, Clinical Trials	Non-English	quality improvement program, stroke	231	231	5	3
Table 10. Rando	Table 11	. Randomized (Controlled Trials Con	een Central Read Stroke Pa nparing Synchror	oke and Teleradiology and Spoke Radiologists and Hub Neu tients Presenting to Telestroke Hospita nous Audio Video Telemedicine to Tele d/or Registries of Telestroke for Triagin	als phone-Only fo	or Acute Ischemi	c Stroke	nography Scans of
MEDLINE	1/12/2017	1/1/1999- 3/1/2017	RCT, Since 1999, Human, Adults, English	None	[(Telemedicine or Remote Consultation) AND Stroke] OR Telestroke; Limited to Humans, Adults, and Randomized Controlled Trials	35	35	7	7

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
			T 1 1 5		Early mobility				
PubMed	2/21/2017	1/1/2010- 2/21/2017	RCT	8. Randomized (pediatrics - late rehabilitation	Controlled Trials of Mobility Intervention (("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND ("early ambulation"[MeSH Terms] OR ("early"[All Fields] AND "ambulation"[All Fields]) OR "early ambulation"[All Fields]) OR "early ("treatment outcome"[MeSH Terms] OR ("treatment"[All Fields] AND "outcome"[All Fields]) OR "treatment outcome"	44	12	5	5
			-		Nutrition				
PubMed	2/21/2017	1/1/2010- 4/26/2017	RCT	Pediatrics	nized Controlled Trials of Nutrition (("enteral nutrition"[MeSH Terms] OR ("enteral"[All Fields] AND "nutrition"[All Fields]) OR "enteral nutrition"[All Fields]) AND ("stroke"[MeSH Terms] OR "stroke"[All Fields])) AND Clinical Trial[ptyp]	18	10	4	4
					Oral care				
					ervational Studies, and/or Registries o ized Controlled Trials of Oral Care	f Oral Hygiene	9		
PubMed	4/26/2017	1/1/2010- 4/26/2017	Guidelines and up to data sources RCT	Pediatrics and late rehabilitation	oral care methods, stroke, stroke nursing,	48	7	3	1
PubMed	4/26/2017	1/1/2010- 4/26/2017	Guidelines and up to date sources - NRCT, Systematic Reviews, observation, adults >=18	Pediatrics and late rehabilitation	("mouth"[MeSH Terms] OR "mouth"[All Fields] OR "oral"[All Fields]) AND care[All Fields] AND ("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND ("pneumonia"[MeSH Terms] OR "pneumonia"[All Fields])	29	10	7	4

Database searched or other source used	Date search conducted	Date range covered by literature search	Inclusion criteria	Exclusion criteria	Search terms	No. studies returned	No titles and abstracts screened	No. full- text articles reviewed	No. studies included based on authors' determination of quality and major impact
				Strok	ke, DVT prophylaxis				
Table 56. Randomized Controlled Trials Comparing Deep Vein Thrombosis Prophylaxis									
PubMed	12/23/2016 (updated 1/20/2017)	1/1/2010- 1/20/2017	RCTs only, English only, adults ≥18	Pediatrics	(("stroke"[MeSH Terms] OR "stroke"[All Fields]) AND dvt[All Fields] AND ("prevention and control"[Subheading] OR ("prevention"[All Fields] AND "control"[All Fields]) OR "prevention and control"[All Fields] OR "prophylaxis"[All Fields])) AND ((Clinical Trial[ptyp] OR Randomized Controlled Trial[ptyp]) AND hasabstract[text])	24	11	11	5